【題目】已知四邊形ABCD⊙O的內(nèi)接四邊形,AC⊙O的直徑,DE⊥AB,垂足為E.

(1)延長DE⊙O于點F,延長DC,F(xiàn)B交于點P,如圖1.求證:PC=PB;

(2)過點BBG⊥AD,垂足為G,BGDE于點H,且點O和點A都在DE的左側,如圖2.若AB= ,DH=1,∠OHD=80°,求∠BDE的大。

【答案】(1)詳見解析;(2)∠BDE=20°.

【解析】

(1)根據(jù)已知條件易證BC∥DF,根據(jù)平行線的性質可得∠F=PBC;再利用同角的補角相等證得∠F=∠PCB,所以∠PBC=PCB,由此即可得出結論;(2)連接OD,先證明四邊形DHBC是平行四邊形,根據(jù)平行四邊形的性質可得BC=DH=1,RtABC中,用銳角三角函數(shù)求出∠ACB=60°,進而判斷出DH=OD,求出∠ODH=20°,再求得∠NOH=DOC=40°,根據(jù)三角形外角的性質可得∠OAD=DOC=20°,最后根據(jù)圓周角定理及平行線的性質即可求解

(1)如圖1,∵AC⊙O的直徑,

∴∠ABC=90°,

∵DE⊥AB,

∴∠DEA=90°,

∴∠DEA=∠ABC,

∴BC∥DF,

∴∠F=∠PBC,

四邊形BCDF是圓內(nèi)接四邊形,

∴∠F+∠DCB=180°,

∵∠PCB+∠DCB=180°,

∴∠F=∠PCB,

∴∠PBC=∠PCB,

∴PC=PB;

(2)如圖2,連接OD,

∵AC⊙O的直徑,

∴∠ADC=90°,

∵BG⊥AD,

∴∠AGB=90°,

∴∠ADC=∠AGB,

∴BG∥DC,

∵BC∥DE,

四邊形DHBC是平行四邊形,

∴BC=DH=1,

Rt△ABC中,AB=,tan∠ACB=,

∴∠ACB=60°,

∴BC=AC=OD,

∴DH=OD,

在等腰△DOH中,∠DOH=∠OHD=80°,

∴∠ODH=20°,

DEACN,

∵BC∥DE,

∴∠ONH=∠ACB=60°,

∴∠NOH=180°﹣(∠ONH+∠OHD)=40°,

∴∠DOC=∠DOH﹣∠NOH=40°,

∵OA=OD,

∴∠OAD=∠DOC=20°,

∴∠CBD=∠OAD=20°,

∵BC∥DE,

∴∠BDE=∠CBD=20°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某實驗中學為了解學生最適合自己的考前減壓方式,在九年級范圍內(nèi)開展了一次抽樣調(diào)查,學生必須在四類選項中選擇一項,小明根據(jù)調(diào)查結果繪制了如下尚不完整的統(tǒng)計圖.

請根據(jù)以上信息解答下列問題:

(1)這次抽樣調(diào)查中,抽查的學生人數(shù)為______人.

(2)請補全條形統(tǒng)計圖.

(3)扇形統(tǒng)計圖中其他所對應扇形圓心角為______度.

(4)若實驗中學九年級有700人,請估計采用聽音樂作為減壓方式的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 (1)閱讀理解:

我們知道,只用直尺和圓規(guī)不能解決的三個經(jīng)典的希臘問題之一是三等分任意角,但是這個任務可以借助如圖所示的一邊上有刻度的勾尺完成,勾尺的直角頂點為P,寬臂的寬度=PQ= QR = RS,(這個條件很重要哦!) 尺的一邊 MN 滿足M, N, Q三點共線(所以PQ ⊥ MN).

下面以三等分∠ABC為例說明利用勾尺三等分銳角的過程:

第一步:畫直線DE使DE //BC,且這兩條平行線的距離等于PQ;

第二步:移動勾尺到合適位置,使其頂點P落在DE上,使勾尺的MN邊經(jīng)過點B,同時讓點R落在∠ABCBA邊上;

第三步:標記此時點Q和點P所在位置,作射線BQ和射線BP:

請完成第三步操作,圖中∠ABC的三等分線是射線 .

2)在(1)的條件下補全三等分∠ABC的主要證明過程:

,BQ ⊥ PR,

∴BP= BR.(線段垂直平分線上的點與這條線段兩個端點的距離相等)

∴∠RBQ=∠PBQ,

∵PT⊥BC,PQ⊥BQ,PT=PQ,

∴∠ = ∠ . (角的內(nèi)部到角的兩邊距離相等的點在角的平分線上)

∴∠ = = ∠ = ∠

3)在(1)的條件下探究:

∠ABS=∠ABC是否成立?如果成立,請說明理由;如果不成立,請在下圖中∠ABC外部畫出∠ABV =∠ABC(無需寫畫法,保留畫圖痕跡即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在日常生活中,如取款、上網(wǎng)等都需要密碼,有一種利用因式分解產(chǎn)生的密碼,方便記憶,原理是:如多項式,若,時,則各因式的值為,,于是把018162作為一個六位數(shù)的密碼,對于多項式,取,時,用上述方法產(chǎn)生的密碼是_________________.(寫一個即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩家快遞公司攬件員(攬收快件的員工)的日工資方案如下:

甲公司為基本工資+攬件提成,其中基本工資為70/日,每攬收一件提成2元;

乙公司無基本工資,僅以攬件提成計算工資.若當日攬件數(shù)不超過40,每件提成4元;若當日攪件數(shù)超過40,超過部分每件多提成2元.

如圖是今年四月份甲公司攬件員人均攬件數(shù)和乙公司攪件員人均攬件數(shù)的條形統(tǒng)計圖:

(1)現(xiàn)從今年四月份的30天中隨機抽取1天,求這一天甲公司攬件員人均攬件數(shù)超過40(不含40)的概率;

(2)根據(jù)以上信息,以今年四月份的數(shù)據(jù)為依據(jù),并將各公司攬件員的人均攬件數(shù)視為該公司各攬件員的

攬件數(shù),解決以下問題:

①估計甲公司各攬件員的日平均件數(shù);

②小明擬到甲、乙兩家公司中的一家應聘攬件員,如果僅從工資收入的角度考慮,請利用所學的統(tǒng)計知識幫他選擇,井說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(題文)如圖,已知正方形ABCD,點E是BC邊的中點,DE與AC相交于點F,連接BF,下列結論:①SABF=SADF;②SCDF=2SCEF;③SADF=2SCEF;④SADF=2SCDF,其中正確的是( 。

A. ①②③ B. ②③ C. ①④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司開發(fā)出一款新的節(jié)能產(chǎn)品,該產(chǎn)品的成本價為6元件,該產(chǎn)品在正式投放市場前通過代銷點進行了為期30天的試銷售,售價為8/件,工作人員對銷售情況進行了跟蹤記錄,并將記錄情況繪成如圖所示的圖象,圖中的折線ODE表示日銷售量y(件)與銷售時間x(天)之間的函數(shù)關系,已知線段DE表示的函數(shù)關系中,時間每增加1天,日銷售量減少5件.

(1)第24天的日銷售量是   件,日銷售利潤是   元.

(2)求線段DE所對應的函數(shù)關系式.(不要求寫出自變量的取值范圍)

(3)通過計算說明試銷售期間第幾天的日銷售量最大?最大日銷售量是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖:在平面直角坐標系中,O為坐標原點,四邊形OABC是長方形,點A、C、D的坐標分別為A9,0)、C0,4),D5,0),點P從點O出發(fā),以每秒1個單位長度的速度沿OCBA運動,點P的運動時間為t.

1)當t=5時, OP長為____________;

2)當點PBC邊上時,OP+PD有最小值嗎?如果有,請算出該最小值,如果沒有,請說明理由;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知A、B、C、D四點的坐標依次為(0,0)、(6,0)(8,6)、(2,6),若一次函數(shù)y=mx﹣6m的圖象將四邊形ABCD的面積分成1:3兩部分,則m的值為_____

查看答案和解析>>

同步練習冊答案