【題目】如圖,在四邊形ABCD中,AB=AD,AC與BD交于點(diǎn)E,∠ADB=∠ACB.
(1)求證:;
(2)若AB⊥AC,AE:EC=1:2,F(xiàn)是BC中點(diǎn),求證:四邊形ABFD是菱形.
【答案】見(jiàn)解析
【解析】(1)利用相似三角形的判定得出△ABE∽△ACB,進(jìn)而求出答案;
(2)首先證明AD=BF,進(jìn)而得出AD∥BF,即可得出四邊形ABFD是平行四邊形,再利用AD=AB,得出四邊形ABFD是菱形.
本題解析:
證明:(1)∵AB=AD,∴∠ADB=∠ABE,又∵∠ADB=∠ACB,∴∠ABE=∠ACB,
又∵∠BAE=∠CAB,∴△ABE∽△ACB,∴,又∵AB=AD,∴;
(2)設(shè)AE=x,∵AE:EC=1:2,∴EC=2x,
由(1)得:AB2=AEAC,∴AB=x,又∵BA⊥AC,∴BC=2x,∴∠ACB=30°,
∵F是BC中點(diǎn),∴BF=x,∴BF=AB=AD,
又∵∠ADB=∠ACB=∠ABD,∴∠ADB=∠CBD=30°,∴AD∥BF,
∴四邊形ABFD是平行四邊形,又∵AD=AB,∴四邊形ABFD是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足為D點(diǎn),AE平分∠BAC,交BD于點(diǎn)F交BC于點(diǎn)E,點(diǎn)G為AB的中點(diǎn),連接DG,交AE于點(diǎn)H,下列結(jié)論錯(cuò)誤的是( )
A.AH=2DFB.HE=BEC.AF=2CED.DH=DF
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖像與的圖像交于點(diǎn),與軸和 軸分別交于點(diǎn)和點(diǎn),且點(diǎn)的橫坐標(biāo)為.
(1)求的值與的長(zhǎng);
(2)若點(diǎn)為線段上一點(diǎn),且,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和幾位同學(xué)做手的影子游戲時(shí),發(fā)現(xiàn)對(duì)于同一物體,影子的大小與光源到物體的距離有關(guān).因此,他們認(rèn)為:可以借助物體的影子長(zhǎng)度計(jì)算光源到物體的位置.于是,他們做了以下嘗試.
(1)如圖①,垂直于地面放置的正方形框架ABCD,邊長(zhǎng)AB為30cm,在其正上方有一燈泡,在燈泡的照射下,正方形框架的橫向影子A′B,D′C的長(zhǎng)度和為6cm.那么燈泡離地面的高度為 .
(2)不改變①中燈泡的高度,將兩個(gè)邊長(zhǎng)為30cm的正方形框架按圖②擺放,請(qǐng)計(jì)算此時(shí)橫向影子A′B,D′C的長(zhǎng)度和為多少?
(3)有n個(gè)邊長(zhǎng)為a的正方形按圖③擺放,測(cè)得橫向影子A′B,D′C的長(zhǎng)度和為b,求燈泡離地面的距離.(寫(xiě)出解題過(guò)程,結(jié)果用含a,b,n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人兩次同時(shí)在同一家超市采購(gòu)貨物(假設(shè)兩次采購(gòu)貨物的單價(jià)不相同),甲每次采購(gòu)貨物100千克,乙每次采購(gòu)貨物用去100元.
(1)假設(shè)a、b分別表示兩次采購(gòu)貨物時(shí)的單價(jià)(單位:元/千克),試用含a、b的式子表示:甲兩次采購(gòu)貨物共需付款 元,乙兩次共購(gòu)買(mǎi) 千克貨物.
(2)請(qǐng)你判斷甲、乙兩人采購(gòu)貨物的方式哪一個(gè)的平均單價(jià)低,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:RT△ABC與RT△DEF中,∠ACB=∠EDF=90°,∠DEF=45°,EF=8cm,AC=16cm,BC=12cm.現(xiàn)將RT△ABC和RT△DEF按圖1的方式擺放,使點(diǎn)C與點(diǎn)E重合,點(diǎn)B、C(E)、F在同一條直線上,并按如下方式運(yùn)動(dòng).
運(yùn)動(dòng)一:如圖2,△ABC從圖1的位置出發(fā),以1cm/s的速度沿EF方向向右勻速運(yùn)動(dòng),DE與AC相交于點(diǎn)Q,當(dāng)點(diǎn)Q與點(diǎn)D重合時(shí)暫停運(yùn)動(dòng);
運(yùn)動(dòng)二:在運(yùn)動(dòng)一的基礎(chǔ)上,如圖3,RT△ABC繞著點(diǎn)C順時(shí)針旋轉(zhuǎn),CA與DF交于點(diǎn)Q,CB與DE交于點(diǎn)P,此時(shí)點(diǎn)Q在DF上勻速運(yùn)動(dòng),速度為cm/s,當(dāng)QC⊥DF時(shí)暫停旋轉(zhuǎn);
運(yùn)動(dòng)三:在運(yùn)動(dòng)二的基礎(chǔ)上,如圖4,RT△ABC以1cm/s的速度沿EF向終點(diǎn)F勻速運(yùn)動(dòng),直到點(diǎn)C與點(diǎn)F重合時(shí)為止.
設(shè)運(yùn)動(dòng)時(shí)間為t(s),中間的暫停不計(jì)時(shí),
解答下列問(wèn)題
(1)在RT△ABC從運(yùn)動(dòng)一到最后運(yùn)動(dòng)三結(jié)束時(shí),整個(gè)過(guò)程共耗時(shí) s;
(2)在整個(gè)運(yùn)動(dòng)過(guò)程中,設(shè)RT△ABC與RT△DEF的重疊部分的面積為S(cm2),求S與t之間的函數(shù)關(guān)系式,并直接寫(xiě)出自變量t的取值范圍;
(3)在整個(gè)運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻,點(diǎn)Q正好在線段AB的中垂線上,若存在,求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平的直角坐標(biāo)系中,直線與軸、軸分別相交于點(diǎn)、,四邊形是正方形,曲線在第一象限經(jīng)過(guò)點(diǎn).求雙曲線表示的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在某隧道建設(shè)工程中,需沿方向開(kāi)山修路,為了加快施工進(jìn)度,要在小山的另一邊同時(shí)施工.為了使開(kāi)挖點(diǎn)在直線上,現(xiàn)在上取一點(diǎn),外取一點(diǎn),測(cè)得,,.求開(kāi)挖點(diǎn)到點(diǎn)的距離.
(精確到米)參考數(shù)據(jù):,,.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,G是邊長(zhǎng)為4的正方形ABCD的邊BC上的一點(diǎn),矩形DEFG的邊EF過(guò)A,GD=5.
(1)指出圖中所有的相似三角形;
(2)求FG的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com