【題目】某農場擬建三件矩形飼養(yǎng)室,飼養(yǎng)室一面靠現(xiàn)有墻(墻可用長≤20m),中間用兩道墻隔開,已知計劃中的建筑材料可建圍墻的總長為60m,設飼養(yǎng)室寬為x(m),總占地面積為y(m2)(如圖所示).

(1)求y關于x的函數(shù)表達式,并直接寫出自變量x的取值范圍;
(2)三間飼養(yǎng)室占地總面積有可能達到210m2嗎?請說明理由.

【答案】
(1)解:設飼養(yǎng)室寬為x(m),則長為(60﹣4x)m,

∴y=x(60﹣4x)=﹣4x2+60x,

∵0<60﹣4x≤20,

∴10≤x<15


(2)解:不能,理由如下:

當y=210時,﹣4x2+60x=210,

解得:x= 或x= ,

∵x= <10,且x= <10,

∴不能


【解析】(1)設飼養(yǎng)室寬為x(m),則長為(60﹣4x)m,根據(jù)長方形面積公式即可得,由墻可用長≤20m可得x的范圍;(2)令y=210求出x,根據(jù)(1)中x的范圍即可判斷.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù) 是關于x的二次函數(shù),求:
(1)滿足條件的m的值;
(2)m為何值時,拋物線有最低點?求出這個最低點,當x為何值時,yx的增大而增大;
(3)m為何值時,拋物線有最大值?最大值是多少?當x為何值時,yx的增大而減?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一些相同的房間需要粉刷墻面,一天3名師傅去粉刷8個房間,結果其中有40㎡墻面未來得及刷;同樣時間內5名徒弟粉刷了9個房間的墻面,每名師傅比徒弟一天多刷30㎡墻面.

(1)求每個房間需要粉刷的墻面面積;

(2)張老板現(xiàn)有36個這樣的房間需要粉刷,若請1名師傅帶2名徒弟去,需幾天完成?

(3)已知每名師傅、徒弟每天的工資分別是85元、65元,張老板要求在3天內(包括3天)完成36個房間的粉刷,問如何在這8人中雇用人員(不一定8人全部雇用),才合算呢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 如圖,已知四邊形ABCD(網(wǎng)格中每個小正方形的邊長均為1).

(1)寫出點A,BC,D的坐標;

(2)求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】講完有理數(shù)的除法后,老師在課堂上出了一道計算題:15÷(-8).不一會兒,不少同學算出了答案,老師把班上同學的解題過程歸類寫到黑板上.

方法一:原式=×(-)=-=-1

方法二:原式=(15+)×(-)=15×(-)+×(-)=-=-1

方法三:原式=(16-)÷(-8)=16÷(-8)-÷(-8)=-2+=-1.

對這三種方法,大家議論紛紛,你認為哪種方法最好?請說出理由,并說說本題對你有何啟發(fā).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:(1)+()÷(-);   (2)-1-(1-)÷3×|3-9|;

(3)1+(2.4××)÷2; (4)(-3-1)÷[3÷(2-3)×1].

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4,BC=5AF平分∠DAE,EFAE,則CF=______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊ABC的邊長是2,D、E分別為AB、AC的中點,過E點作EFDCBC的延長線于點F,連接CD.

(1)求證:四邊形CDEF是平行四邊形;

(2)求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,點P自點AD1cm/s的速度運動,到D點即停止.點Q自點CB2cm/s的速度運動,到B點即停止,直線PQ截梯形為兩個四邊形.問當P,Q同時出發(fā),幾秒時其中一個四邊形為平行四邊形?

查看答案和解析>>

同步練習冊答案