【題目】如圖1,將矩形紙片ABCD沿對角線BD向上折疊,點C落在點E處,BE交AD于點F.
(1)求證:△BDF是等腰三角形;
(2)如圖2,過點D作DG∥BE,交BC于點G,連接FG交BD于點O.
①判斷四邊形BFDG的形狀,并說明理由;
②若AB=6,AD=8,求FG的長.
圖1
圖2
【答案】(1)詳見解析;(2)①四邊形BFDG是菱形;②.
【解析】
1)根據(jù)兩直線平行內(nèi)錯角相等及折疊特性判斷;
(2)①根據(jù)已知矩形性質(zhì)及第一問證得鄰邊相等判斷;
②根據(jù)折疊特性設(shè)未知邊,構(gòu)造勾股定理列方程求解.
(1)證明:如圖1,由折疊得,∠DBC=∠DBE.∵AD∥BC∴∠DBC=∠BDA
∴∠BDA=∠DBE∴BF=DF∴△BDF是等腰三角形.
(2)①四邊形BFDG是菱形,理由如下:如圖2
∵AD∥BC.DG∥BF.∴四邊形BFDG是平行四邊形,
又∵BF=DF,∴四邊形BFDG是菱形.
②∵四邊形BFDG是菱形.∴FG⊥BD.BO=BD.FO=FG
∵AB=6,AD=8∴BD=10.∴BO=5.設(shè)DF=x,
則AF=8-x在Rt△ABF中,62+(8-x)2=x2
解得x=,在Rt△BOF中,∴FO==∴FG=2FO=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點M是邊BC上一點,BM=3,點N是線段MC上的一個動點,連接DN,ME,DN與ME相交于點O.若△OMN是直角三角形,則DO的長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AE⊥BD于點E,CF⊥BD于點F,連結(jié)AF、CE.
(1)求證:四邊形AECF是平行四邊形;
(2)若AB=6,AD=2,∠ABD=30°,求四邊形AECF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近幾年,全社會對空氣污染問題越來越重視,空氣凈化器的銷量也在逐年增加.某商場從廠家購進了A、B兩種型號的空氣凈化器,兩種凈化器的銷售相關(guān)信息見下表:
A型銷售數(shù)量(臺) | B型銷售數(shù)量(臺) | 總利潤(元) |
5 | 10 | 2000 |
10 | 5 | 2500 |
(1)每臺A型空氣凈化器和B型空氣凈化器的銷售利潤分別是多少?
(2)該公司計劃一次購進兩種型號的空氣凈化器共100臺,其中B型空氣凈化器的進貨量不少于A型空氣凈化器的2倍,為使該公司銷售完這100臺空氣凈化器后的總利潤最大,請你設(shè)計相應(yīng)的進貨方案;
(3)已知A型空氣凈化器的凈化能力為300m3/小時,B型空氣凈化器的凈化能力為200m3/小時,某長方體室內(nèi)活動場地的總面積為200m2 , 室內(nèi)墻高3m,該場地負(fù)責(zé)人計劃購買5臺空氣凈化器每天花費30分鐘將室內(nèi)就歐諾個氣凈化一新,若不考慮空氣對流等因素,至少要購買A型空氣凈化器多少臺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點M是BC邊上的中點,AN平分∠BAC,BN⊥AN于點N,且AN=8,BN=6,AC=16,則MN的長是()
A. 4B. 3C. 2.5D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解龍崗區(qū)學(xué)生喜歡球類活動的情況,采取抽樣調(diào)查的方法,從足球、乒乓球、籃球、排球等四個方面調(diào)查了全班學(xué)生的興趣愛好,根據(jù)調(diào)查的結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計圖(如圖①,②,要求每位學(xué)生只能選擇一種自己喜歡的球類),請你根據(jù)圖中提供的信息解答下列問題:
(1)本次共調(diào)查的學(xué)生人數(shù)為___,并把條形統(tǒng)計圖補充完整;
(2)扇形統(tǒng)計圖中m=___,n=___;
(3)表示“足球”的扇形的圓心角是___度;
(4)若龍崗區(qū)初中學(xué)生共有60000人,則喜歡乒乓球的有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠B=90°,AD=8cm,BC=10cm,AB=6cm,點Q從點A出發(fā)以1 cm/s的速度向點D運動,點P從點B出發(fā)以2 cm/s的速度向點C運動,P,Q兩點同時出發(fā),當(dāng)點P到達(dá)點C時,兩點同時停止運動.若設(shè)運動時間為t(s)
(1)直接寫出:QD=______cm,PC=_______cm;(用含t的式子表示)
(2)當(dāng)t為何值時,四邊形PQDC為平行四邊形?
(3)若點P與點C不重合,且DQ≠DP,當(dāng)t為何值時,△DPQ是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在△ABC中,∠ACB=90°,AC=BC,CD⊥AB于點D,點E、F分別在AC、BC上,且∠EDF=90°.
(1)求證:△AED≌△CFD;
(2)試判斷CE、CF與CD之間的數(shù)量關(guān)系,并說明理由;
(3)若CF=1,CE=3,試求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某一天,水果經(jīng)營戶老張用1600元從水果批發(fā)市場批發(fā)獼猴桃和芒果共50千克,后再到水果市場去賣,已知獼猴桃和芒果當(dāng)天的批發(fā)價和零售價如表所示:
品名 | 獼猴桃 | 芒果 |
批發(fā)價元千克 | 20 | 40 |
零售價元千克 | 26 | 50 |
他購進的獼猴桃和芒果各多少千克?
如果獼猴桃和芒果全部賣完,他能賺多少錢?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com