【題目】如圖,正方形ABCD的邊長(zhǎng)為1,AC,BD是對(duì)角線。將△DCB繞著點(diǎn)D順時(shí)針旋轉(zhuǎn)45°得到△DGH,HG交AB于點(diǎn)E,連接DE交AC于點(diǎn)F,連接FG。則下列結(jié)論:①四邊形AEGF是菱形;②△AED≌△GED;③∠DFG=112.5°;④BC+FG=1.5.其中正確的結(jié)論是( )
A. ①②③④ B. ①②③ C. ①② D. ②
【答案】B
【解析】
首先證明△ADE≌△GDE,再求出∠AEF、∠AFE、∠GEF、∠GFE的度數(shù),推出AE=EG=FG=AF,由此可以一一判斷.
解:∵四邊形ABCD是正方形,
∴AD=DC=BC=AB,∠DAB=∠ADC=∠DCB=∠ABC=90°,∠ADB=∠BDC=∠CAD=∠CAB=45°,
∵△DGH是由△DCB旋轉(zhuǎn)得到,
∴DG=DC=AD,∠DGE=∠DCB=∠DAE=90°,
在Rt△AED和Rt△GED中,
∴△AED≌△GED,故②正確,
∴∠ADE=∠EDG=22.5°,AE=GE,
∴∠AED=∠AFE=67.5°,
∴AE=AF,同理GE=GF,
∴AE=GE=GF=AF,
∴四邊形AEGF是菱形,故①正確,
∵∠DFG=∠GFC+∠DFC=∠BAC+∠DAC+∠ADF=112.5°,故③正確.
∵AE=FG=EG=BG,BE=AE,
∴BE>AE,
∴AE<,
∴CB+FG<1.5,故④錯(cuò)誤.
故選:B
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=6,∠DAB=60°,AE分別交BC、BD于點(diǎn)E、F,若CE=2,連接CF.以下結(jié)論:①∠BAF=∠BCF; ②點(diǎn)E到AB的距離是2; ③S△CDF:S△BEF=9:4; ④tan∠DCF=3/7. 其中正確的有()
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,點(diǎn)在邊上(點(diǎn)與點(diǎn)、不重合),過點(diǎn)作,與邊相交于點(diǎn),與邊的延長(zhǎng)線相交于點(diǎn).
(1)與有什么樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的結(jié)論:____________________
(2)、、的數(shù)量之間具有怎樣的關(guān)系?并證明你所得到的結(jié)論.
(3)如果正方形的邊長(zhǎng)是1,,直接寫出點(diǎn)到直線的距離.
解:(1)與的數(shù)量關(guān)系:____________________
(2)、、的數(shù)量之間的關(guān)系是 .
證明:
(3)點(diǎn)到直線的距離是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,P為AD邊上一點(diǎn),沿直線BP將△ABP翻折至△EBP(點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)E),PE與CD相交于點(diǎn)O,且OE=OD.
(1)求證:PE=DH;
(2)若AB=10,BC=8,求DP的長(zhǎng).
【答案】(1)見解析;(2).
【解析】試題分析:(1) 先證明△DOP≌△EOH,再利用等量代換得到PE=DH.
(2) 設(shè)DP=x, Rt△BCH中,先用 x表示三角形三邊,利用勾股定理列式解方程.
試題解析:
(1)解:證明:∵OD=OE,∠D=∠E=90°,∠DOP=∠EOH,
∴△DOP≌△EOH,
∴OP=OH,
∴PO+OE=OH+OD,
∴PE=DH.
(2)解:設(shè)DP=x,則EH=x,BH=10﹣x,
CH=CD﹣DH=CD﹣PE=10﹣(8﹣x)=2+x,
∴在Rt△BCH中,BC2+CH2=BH2
(2+x)2+82=(10﹣x)2,
∴x=,
∴DP=.
【題型】解答題
【結(jié)束】
25
【題目】某文教店老板到批發(fā)市場(chǎng)選購(gòu)A,B兩種品牌的繪圖工具套裝,每套A品牌套裝進(jìn)價(jià)比B品牌每套套裝進(jìn)價(jià)多2.5元,已知用200元購(gòu)進(jìn)A種套裝的數(shù)量是用75元購(gòu)進(jìn)B種套裝數(shù)量的2倍.
(1)求A,B兩種品牌套裝每套進(jìn)價(jià)分別為多少元?
(2)若A品牌套裝每套售價(jià)為13元,B品牌套裝每套售價(jià)為9.5元,店老板決定,購(gòu)進(jìn)B品牌的數(shù)量比購(gòu)進(jìn)A品牌的數(shù)量的2倍還多4套,兩種工具套裝全部售出后,要使總的獲利超過120元,則最少購(gòu)進(jìn)A品牌工具套裝多少套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC中,AC=BC,以BC為直徑的⊙O交AB于點(diǎn)D,過點(diǎn)D作DE⊥AC于點(diǎn)E,交BC的延長(zhǎng)線于點(diǎn)F.
求證:
(1)AD=BD;
(2)DF是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,AD的中點(diǎn),
且∠ABM=∠BAM,連接BM,MN,BN.
(1)求證:BM=MN;
(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的圖象過點(diǎn)C(0,1),頂點(diǎn)為Q(2,3),點(diǎn)D在x軸正半軸上,線段OD=OC.
(1)求拋物線的解析式;
(2)拋物線上是否存在點(diǎn)M,使得△CDM是以CD為直角邊的直角三角形?若存在,請(qǐng)求出M點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)將直線CD繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)45°所得直線與拋物線相交于另一點(diǎn)E,連接QE.若點(diǎn)P是線段QE上的動(dòng)點(diǎn),點(diǎn)F是線段OD上的動(dòng)點(diǎn),問:在P點(diǎn)和F點(diǎn)的移動(dòng)過程中,△PCF的周長(zhǎng)是否存在最小值?若存在,求出這個(gè)最小值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】古希臘的畢達(dá)哥拉斯學(xué)派由古希臘哲學(xué)家畢達(dá)哥拉斯所創(chuàng)立,畢達(dá)哥拉斯學(xué)派認(rèn)為數(shù)是萬(wàn)物的本原,事物的性質(zhì)是由某種數(shù)量關(guān)系決定的,如他們研究各種多邊形數(shù):記第n個(gè)k邊形數(shù)N(n,k)=n2+n(n≥1,k≥3,k、n都為整數(shù)),
如第1個(gè)三角形數(shù)N(1,3)=×12+×1=1;
第2個(gè)三角形數(shù)N(2,3)=×22+×2=3;
第3個(gè)四邊形數(shù)N(3,4)=×32+×3=9;
第4個(gè)四邊形數(shù)N(4,4)=×42+×4=16.
(1)N(5,3)=________,N(6,5)=________;
(2)若N(m,6)比N(m+2,4)大10,求m的值;
(3)若記y=N(6,t)-N(t,5),試求出y的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com