如圖,小明在商貿(mào)大廈離地面25m高的A處看地面C處汽車,測得俯角為45°,小明上升5m后到B處看到該汽車行駛到D處,測得俯角為60°,若汽車在與該樓的垂直線上行駛,求汽車行駛的距離CD的長.(結(jié)果精確到0.1米,參考數(shù)據(jù)
2
≈1.414,
3
≈1.732)
考點:解直角三角形的應(yīng)用-仰角俯角問題
專題:
分析:在直角△AEC中,首先求得ED的長,然后在直角△BDE中,利用三角函數(shù)求得EC的長,則根據(jù)CD=CE-DE即可求解.
解答:解:由題意得,∠CAE=45°,∠EBD=30°,
∴在直角△ACE中,CE=AE=25m,
∵在直角△BDE中,DE=BE•tan30°=10
3
m.
∴CD=CE-DE=25-10
3
≈7.7(m).
答:汽車行駛的距離CD的長是7.7m.
點評:本題考查了解直角三角形和俯角的定義,正確理解直角三角形中的邊、角關(guān)系是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AD是圓O的切線,切點為A,AB是圓O的弦.過點B作BC∥AD,交圓O于點C,連接AC,過點C作CD∥AB,交AD于點D.連接AO并延長交BC于點M,交過點C的直線于點P,且∠BCP=∠ACD.判斷直線PC與圓O的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,已知△ABC和點P(1,2),作△PQR,使△PQR≌△ABC,且點Q,R都在網(wǎng)格上,把你能作出的全畫上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC是等邊三角形,D、E分別是AB、BC上的點,且AD=BE,連結(jié)CD、AE,CD與AE相交于點F.
(1)求證:△ACD≌△BAE;
(2)求∠EFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O交AB于點D,E是BC的中點.
(1)求證:DE是⊙O的切線;
(2)過點E作EF⊥DE,交AB于點F.若AC=3,BC=4,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,用長為20米的籬笆恰好圍成一個扇形花壇,且扇形花壇的圓心角小于180°,設(shè)扇形花壇的半徑為r米,面積為S平方米.(注:π的近似值取3)
(1)求出S與r的函數(shù)關(guān)系式,并寫出自變量r的取值范圍;
(2)當(dāng)半徑r為何值時,扇形花壇的面積最大,并求面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

商場銷售某種冰箱,該種冰箱每臺進價為2500元,已知原銷售價為每臺2900元時,平均每天能售出8臺.若在原銷售價的基礎(chǔ)上每臺降價50元,則平均每天可多售出4臺.設(shè)每臺冰箱的實際售價比原銷售價降低了x元.
(1)填表(不需化簡):
每天的銷售量/臺 每臺銷售利潤/元
降價前 8 400
降價后
 
 
(2)商場為使這種冰箱平均每天的銷售利潤達(dá)到5000元,則每臺冰箱的實際售價應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,∠C=90°,AD平分∠BAC,AD交BC于點D,AB=15,CD=4,則△ABD的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,∠C=90°,∠A=25°,以點C為圓心,BC為半徑的圓交AB于點D,交AC于點E,則
BD
的度數(shù)為( 。
A、25°B、30°
C、50°D、65°

查看答案和解析>>

同步練習(xí)冊答案