如圖,已知△ABC是等邊三角形,D、E分別是AB、BC上的點(diǎn),且AD=BE,連結(jié)CD、AE,CD與AE相交于點(diǎn)F.
(1)求證:△ACD≌△BAE;
(2)求∠EFC的度數(shù).
考點(diǎn):全等三角形的判定與性質(zhì),等邊三角形的性質(zhì)
專(zhuān)題:
分析:(1)根據(jù)等邊三角形的性質(zhì)可知AC=AB,∠B=∠CAD,可證明△ACD≌△BAE,從而證得結(jié)論;
(2)根據(jù)∠EFC=∠ACD+∠CAF,可知∠EFC=∠BAE+∠CAE=60°.
解答:(1)證明:∵△ABC是等邊三角形,
∴AC=AB,∠B=∠CAD,
在△ACD和△BAE中,
AD=BE
∠DAC=∠B
AC=AB
,
∴△ACD≌△BAE(SAS);

(2)∵△ACD≌△BAE,
∴∠BAE=∠ACD,
∵∠EFC=∠ACD+∠CAF,
∴∠EFC=∠BAE+∠CAE=60°.
點(diǎn)評(píng):本題考查三角形全等的性質(zhì)和判定方法以及等邊三角形的性質(zhì).判定兩個(gè)三角形全等的一般方法有:SSS、SAS、SSA、HL.判定兩個(gè)三角形全等,先根據(jù)已知條件或求證的結(jié)論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在代數(shù)式:a2b,3x2+1,0,-
1
x
,
3m+n
2
,n,
a
2
-b
中.
 
是單項(xiàng)式,
 
是多項(xiàng)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在下列各組二次根式中,化成最簡(jiǎn)二次根式后能夠合并的一組是(  )
A、
3
,
18
B、
3
,
1
3
C、
50
,
100
D、
a2+1
,
a2-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知A、B兩點(diǎn)被一個(gè)池塘隔開(kāi),無(wú)法直接測(cè)量,但兩點(diǎn)可以到達(dá),現(xiàn)給出一種方案:找兩點(diǎn)C、D,使AD∥BC,且AD=BC,量出CD的長(zhǎng)即得AB的長(zhǎng).其理由是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

下面是一個(gè)按某種規(guī)律排列的數(shù)陣:

根據(jù)數(shù)陣排列的規(guī)律,第5行從左向右數(shù)第3個(gè)數(shù)是
 
,第n(n≥3且n是整數(shù))行從左向右數(shù)第n-2個(gè)數(shù)是
 
(用含n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,二次函數(shù)y1=ax2+bx+c(a≠0)的圖象與一次函數(shù)y2=x+b的圖象交于A(0,1),B兩點(diǎn).C(1,0)為二次函數(shù)圖象的頂點(diǎn).
(1)求二次函數(shù)y1=ax2+bx+c(a≠0)的解析式;
(2)定義函數(shù)f:“當(dāng)自變量x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1或y2,若y1≠y2,函數(shù)f的函數(shù)值等于y1、y2中的較小值;若y1=y2,函數(shù)f的函數(shù)值等于y1(或y2).”當(dāng)直線(xiàn)y3=kx-
1
2
(k>0)與函數(shù)f的圖象只有兩個(gè)交點(diǎn)時(shí),求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,小明在商貿(mào)大廈離地面25m高的A處看地面C處汽車(chē),測(cè)得俯角為45°,小明上升5m后到B處看到該汽車(chē)行駛到D處,測(cè)得俯角為60°,若汽車(chē)在與該樓的垂直線(xiàn)上行駛,求汽車(chē)行駛的距離CD的長(zhǎng).(結(jié)果精確到0.1米,參考數(shù)據(jù)
2
≈1.414,
3
≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四邊形ABCD中,AD∥BC且BD=DC,E是BC上一點(diǎn),且CE=DA.求證:AB=ED.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖是教學(xué)用直角三角板,邊AC=30cm,∠C=90°,∠BAC=30°,則BC長(zhǎng)為( 。
A、30
3
cm
B、20
3
cm
C、10
3
cm
D、5
3
cm

查看答案和解析>>

同步練習(xí)冊(cè)答案