【題目】如圖所示,在ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,過(guò)點(diǎn)O作一條直線分別交AB,CD于點(diǎn)E,F(xiàn).
(1)求證:OE=OF;
(2)若AB=6,BC=5,OE=2,求四邊形BCFE的周長(zhǎng).
【答案】
(1)證明:在□ABCD中,
∵AC與BD相交于點(diǎn)O,
∴OA=OC,AB∥CD,
∴∠OAE=∠OCF,在△OAE和△OCF中, ,
∴△OAE≌△OCF(ASA),
∴OE=OF.
(2)解:∵△OAE≌△OCF,
∴DF=AE,
∴BE+CF=AB=6,
又∵EF=2OE=4,
∴四邊形BCFE的周長(zhǎng)=BE+BE+CF+EF=6+4+5=15
【解析】(1)由四邊形ABCD是平行四邊形,可得OA=OC,AB∥CD,則可證得△AOE≌△COF(ASA),繼而證得OE=OF;(2)由△AOE≌△COF(ASA),可得EF=2OE=4,BE+CF=AB=6,繼而求得答案.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解平行四邊形的性質(zhì)(平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,D為BC邊上一個(gè)動(dòng)點(diǎn)(D與B、C均不重合),AD=AE,∠DAE=60°,連接CE.
(1)求證:△ABD≌△ACE;
(2)求證:CE平分∠ACF;
(3)若AB=2,當(dāng)四邊形ADCE的周長(zhǎng)取最小值時(shí),求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:線段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙兩同學(xué)的作業(yè):
甲:(1)以點(diǎn)C為圓心,AB長(zhǎng)為半徑畫。
(2)以點(diǎn)A為圓心,BC長(zhǎng)為半徑畫;
(3)兩弧在BC上方交于點(diǎn)D,連接AD,CD,四邊形ABCD即為所求(如圖1)
乙:(1)連接AC,作線段AC的垂直平分線,交AC于點(diǎn)M;
(2)連接BM并延長(zhǎng),在延長(zhǎng)線上取一點(diǎn)D,使MD=MB,連接AD,CD,四邊形ABCD即為所求(如圖2).
對(duì)于兩人的作業(yè),下列說(shuō)法正確的是( 。
A. 兩人都對(duì) B. 兩人都不對(duì) C. 甲對(duì),乙不對(duì) D. 甲不對(duì),乙對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用正方形硬紙板做三棱柱盒子,每個(gè)盒子由3個(gè)矩形側(cè)面和2個(gè)正三角形底面組成。硬紙板以如圖兩種方式裁剪(裁剪后邊角料不再利用)
A方法:剪6個(gè)側(cè)面; B方法:剪4個(gè)側(cè)面和5個(gè)底面。
現(xiàn)有19張硬紙板,裁剪時(shí)張用A方法,其余用B方法。
(1)用的代數(shù)式分別表示裁剪出的側(cè)面和底面的個(gè)數(shù);
(2)若裁剪出的側(cè)面和底面恰好全部用完,問(wèn)能做多少個(gè)盒子?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩個(gè)連接在一起的菱形的邊長(zhǎng)都是1cm,一只電子甲蟲從點(diǎn)A開始按ABCDAEFGAB…的順序沿菱形的邊循環(huán)爬行,當(dāng)電子甲蟲爬行2014cm時(shí)停下,則它停的位置是( )
A. 點(diǎn)F B. 點(diǎn)E C. 點(diǎn)A D. 點(diǎn)C
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,橫、縱坐標(biāo)都為整數(shù)的點(diǎn)稱為整點(diǎn).如圖,從內(nèi)向外依次為第,,,,個(gè)正方形(實(shí)線),若整點(diǎn)在第個(gè)正方形的邊上,則,,之間滿足的數(shù)量關(guān)系為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,B、C是⊙A上的兩點(diǎn),AB的垂直平分線與⊙A交于E、F兩點(diǎn),與線段AC交于D點(diǎn).若∠BFC=20°,則∠DBC=( )
A.30°
B.29°
C.28°
D.20°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長(zhǎng)線分別交AD于點(diǎn)E、F,連接BD、DP,BD與CF相交于點(diǎn)H,給出下列結(jié)論:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC
其中正確的是( )
A.①②③④
B.②③
C.①②④
D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面的證明,在括號(hào)內(nèi)填上理由.
如圖,,.
求證:.
證明: (已知),
(____________________).
(____________________).
__________(____________________).
(____________________).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com