【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度,三角形ABC的頂點(diǎn)都在格點(diǎn)上,將三角形ABC向右平移2個(gè)單位長(zhǎng)度,再向上平移3個(gè)單位長(zhǎng)度,得到三角形A′B′C′
(1)請(qǐng)?jiān)趫D中畫(huà)出三角形A′B′C′;
(2)求三角形ABC的面積;
(3)若AC的長(zhǎng)約為2.8,則邊AC上的高約為多少?(結(jié)果保留分?jǐn)?shù))
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰△ABC中,直線l垂直底邊BC,現(xiàn)將直線l沿線段BC從B點(diǎn)勻速平移至C點(diǎn),直線l與△ABC的邊相交于E,F(xiàn)兩點(diǎn).設(shè)線段EF的長(zhǎng)度為y,平移時(shí)間為t,則下圖中能較好反映y與t的函數(shù)關(guān)系的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,沿EF將矩形折疊,使A、C重合,AC與EF交于點(diǎn)H.
(1)求證:△ABE≌△AGF;
(2)若AB=6,BC=8,求△ABE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形紙片ABCD中,AB=4,BC=6,將△ABC沿AC折疊,使點(diǎn)B落在點(diǎn)E處,CE交AD于點(diǎn)F,則DF的長(zhǎng)等于( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOC:∠COD:∠BOD=2:3:4,且A,O,B三點(diǎn)在一條直線上,OE,OF分別平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度數(shù).將下列解題過(guò)程補(bǔ)充完整.
解:因?yàn),?/span>AOC:∠COD:∠BOD=2:3:4,
所以∠AOC= ,∠COD= ,∠BOD= ,
因?yàn)?/span>OE,OF分別平分∠AOC和∠BOD,
所以∠AOE= ,∠BOF= ,
所以∠EOF= ,
又因?yàn)?/span> ,所以∠GOF=60°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,□ABCD中,∠A=60°,點(diǎn)E、F分別在邊AD、DC上,DE=DF,且∠EBF=60°,若AE=2,FC=3,則EF的長(zhǎng)度為_________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】柯橋區(qū)某企業(yè)因?yàn)榘l(fā)展需要,從外地調(diào)運(yùn)來(lái)一批94噸的原材料,現(xiàn)有甲、乙、丙三種車(chē)型共選擇,每輛車(chē)的運(yùn)載能力和運(yùn)費(fèi)如下表所示:(假設(shè)每輛車(chē)均滿載)
車(chē)型 | 甲 | 乙 | 丙 |
汽車(chē)運(yùn)載量(噸/輛) | 5 | 8 | 10 |
汽車(chē)運(yùn)費(fèi)(元/輛) | 400 | 500 | 600 |
(1)若全部物資都用甲、乙兩種車(chē)型來(lái)運(yùn)送,需運(yùn)費(fèi)6400元,問(wèn)分別需甲、乙兩種車(chē)型各幾輛?
(2)為了節(jié)省運(yùn)費(fèi),該地政府打算用甲、乙、丙三種車(chē)型同時(shí)參與運(yùn)送,已知它們的總輛數(shù)為14輛,你能分別求出三種車(chē)型的輛數(shù)嗎?此時(shí)的運(yùn)費(fèi)又是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線可變形為:,則點(diǎn)P()到直線的距離d可用公式計(jì)算.
例如:求點(diǎn)P(-2,1)到直線的距離.
解:因?yàn)橹本可變形為,其中,.
所以點(diǎn)P(-2,1)到直線的距離為.
根據(jù)以上材料求:
(1)點(diǎn)P(2,-1)到直線的距離;
(2)已知M為直線上的點(diǎn),且M到直線的距離為,求M的坐標(biāo);
(3)已知線段上的點(diǎn)到直線的最小距離為1,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)企業(yè)生產(chǎn)部有技術(shù)工人15人,生產(chǎn)部為了合理制定產(chǎn)品的每月生產(chǎn)定額,統(tǒng)計(jì)了15人某月的加工零件個(gè)數(shù):
每人加工件數(shù) | 540 | 450 | 300 | 240 | 210 | 120 |
人數(shù) | 1 | 1 | 2 | 6 | 3 | 2 |
(1)寫(xiě)出這15人該月加工零件數(shù)的平均數(shù)、中位數(shù)和眾數(shù)。
(2)若以本次統(tǒng)計(jì)所得的月加工零件數(shù)的平均數(shù)定為每位工人每月的生產(chǎn)定額,你認(rèn)為這個(gè)定額是否合理,為什么?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com