【題目】如圖,一次函數(shù)y=x+2與反比例函數(shù)y=的圖象相交于A(2,m),B(﹣4,n)兩點.
(1)求反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請直接寫出不等式x+2>的解集: ;
(3)過點B作BC⊥x軸,垂足為C,連接AC,求S△ABC.
【答案】(1)y=;(2)﹣4<x<0或x>2;(3)6
【解析】試題分析:(1)把A點坐標代入一次函數(shù)解析式,求出m的值,然后把A點坐標代入反比例函數(shù)解析式求出k的值即可;
(2)結(jié)合圖象,使不等式成立的x值即是直線在雙曲線上方時對應的自變量x的取值范圍;
(3)把B點坐標代入一次函數(shù)解析式,求出n的值,然后根據(jù)A點和B點坐標求出BC和BC邊上的高,然后根據(jù)三角形的面積公式求解即可.
試題解析:
(1)把x=2,y=m代入y=x+2中,解得m=4,
∴點A坐標為(2,4),
∵點A在反比例函數(shù)y=的圖象上,
∴2=,
解得,k=8,
則反比例函數(shù)的解析式為y=;
(2)由圖象可知,當﹣4<x<0或x>2時,x+2>,
故答案為:﹣4<x<0或x>2;
(3)把x=﹣4,y=n代入y=x+2中,解得n=﹣2,
∴點B坐標為(﹣4,﹣2),
∴S△ABC=×2×(2+4)=6.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,若點P從點A出發(fā),以每秒1cm的速度沿折線A﹣B﹣C﹣A運動,設運動時間為t(t>0)秒.
(1)AC= cm;
(2)若點P恰好在AB的垂直平分線上,求此時t的值;
(3)在運動過程中,當t為何值時,△ACP是以AC為腰的等腰三角形(直接寫出結(jié)果)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖所示(1<x=h<2,0<xA<1),下列結(jié)論:① 2a+b>0;② abc<0;③ 若OC=2OA,則2b-ac = 4;④ 3a﹣c<0,其中正確的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某百貨商店服裝柜在銷售中發(fā)現(xiàn):某品牌童裝每天可售出20件,每件盈利40元,經(jīng)市場調(diào)查發(fā)現(xiàn),在進貨價不變的情況下,若每件童裝每降價1元,日銷售量將增加2件.
(1)當每件童裝降價多少元時,一天的盈利最多?
(2)若商場要求一天的盈利為1200元,同時又使顧客得到實惠,每件童裝降價多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,A點的坐標為(1,0).以OA為邊在x軸上方畫一個正方形OABC.以原點O為圓心,正方形的對角線OB長為半徑畫弧,與x軸正半軸交于點D.
(1)點D的坐標是 ;
(2)點P(x,y),其中x,y滿足2x-y=-4.
①若點P在第三象限,且△OPD的面積為3,求點P的坐標;
②若點P在第二象限,判斷點E(+1,0)是否在線段OD上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正比例函數(shù)圖象經(jīng)過(﹣2,4).
(1)如果點(a,1)和(﹣1,b)在函數(shù)圖象上,求a,b的值;
(2)過圖象上一點P作y軸的垂線,垂足為Q,S△OPQ=,求Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在平面直角坐標系中,正比例函數(shù)y=的圖象經(jīng)過A,點A的縱坐標為4,反比例函數(shù)y=的圖象也經(jīng)過點A,在第一象限內(nèi)的點B在這個反比例函數(shù)圖象上,過點B做BC∥x軸,交y軸于點C,且AC=AB,求:
(1)這個反比例函數(shù)的解析式;
(2)ΔABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算
(1)(﹣4)2007·(0.25)2018
(2)3(2﹣y)2﹣4(y+5)
(3)(a+2b)(a﹣2b)﹣b(a﹣8b)
(4)(a﹣b)(a2+ab+b2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,一個長方形的三個頂點坐標分別為(﹣2,﹣2),(﹣2,3),(5,﹣2),則第四個頂點的坐標( 。
A. (5,3) B. (3,5) C. (7,3) D. (3,3)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com