【題目】如圖,在中,的平分線相交于點(diǎn),過點(diǎn),交,過點(diǎn)下列結(jié)論:①②點(diǎn)各邊的距離相等;;④設(shè),,則;.其中正確的結(jié)論是.__________

【答案】①②③⑤

【解析】

由在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,根據(jù)角平分線的定義與三角形內(nèi)角和定理,即可求得③∠BOC=90°+A正確;由平行線的性質(zhì)和角平分線的定義得出△BEO和△CFO是等腰三角形得出EF=BE+CF故①正確;由角平分線的性質(zhì)得出點(diǎn)O到△ABC各邊的距離相等,故②正確;由角平分線定理與三角形面積的求解方法,即可求得④設(shè)OD=m,AE+AF=n,則SAEF=mn,故④錯(cuò)誤,根據(jù)HL證明△AMO≌△ADO得到AM=AD,同理可證BM=BN,CD=CN,變形即可得到⑤正確.

∵在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,∴∠OBC=ABC,∠OCB=ACB,∠A+ABC+ACB=180°,∴∠OBC+OCB=90°﹣A,∴∠BOC=180°﹣(∠OBC+OCB=90°+A;故③正確;

∵在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,∴∠OBC=OBE,∠OCB=OCF

EFBC,∴∠OBC=EOB,∠OCB=FOC,∴∠EOB=OBE,∠FOC=OCF,∴BE=OECF=OF,∴EF=OE+OF=BE+CF,故①正確;

過點(diǎn)OOMABM,作ONBCN,連接OA

∵在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,∴ON=OD=OM=m,∴SAEF=SAOE+SAOF=AEOM+AFOD=ODAE+AF=mn;故④錯(cuò)誤;

∵在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,∴點(diǎn)O到△ABC各邊的距離相等,故②正確;

AO=AO,MO=DO,∴△AMO≌△ADOHL),∴AM=AD;

同理可證:BM=BNCD=CN

AM+BM=AB,AD+CD=AC,BN+CN=BC,∴AD=AB+ACBC)故⑤正確.

故答案為:①②③⑤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是以O為圓心的半圓的直徑,半徑COAO,點(diǎn)M上的動(dòng)點(diǎn),且不與點(diǎn)A、C、B重合,直線AM交直線OC于點(diǎn)D,連結(jié)OMCM.

(1)若半圓的半徑為10.

①當(dāng)∠AOM=60°時(shí),求DM的長;

②當(dāng)AM=12時(shí),求DM的長.

(2)探究:在點(diǎn)M運(yùn)動(dòng)的過程中,∠DMC的大小是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)分別是等邊,上的動(dòng)點(diǎn),點(diǎn)從頂點(diǎn)向點(diǎn)運(yùn)動(dòng),點(diǎn)從頂點(diǎn)向點(diǎn)運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),且它們的速度都相同.

(1)連接,交于點(diǎn),則在,運(yùn)動(dòng)的過程中,的大小發(fā)生變化嗎?若變化,則說明理由,若不變,則求出它的度數(shù);

(2)如圖2,若點(diǎn),Q在運(yùn)動(dòng)到終點(diǎn)后繼續(xù)在射線,上運(yùn)動(dòng),直線、交點(diǎn)為,則的大小發(fā)生變化嗎?若變化,則說明理由,若不變,則求出它的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,ABC=90°,點(diǎn)D是AC的中點(diǎn),作ADB的角平分線DE交AB于點(diǎn)E,

(1)求證:DE∥BC;

(2)若AE=3,AD=5,點(diǎn)P為線段BC上的一動(dòng)點(diǎn),當(dāng)BP為何值時(shí),DEP為等腰三角形.請求出所有BP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸、軸分別相交于點(diǎn)、,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn).

1)求的值;

2)點(diǎn)在第二象限內(nèi)的直線上的運(yùn)動(dòng)過程中,寫出的面積的函整表達(dá)式,并寫出自變量的取值范圍;

3)探究,當(dāng)點(diǎn)在直線上運(yùn)動(dòng)到時(shí),的面積可能是嗎,若能,請求出點(diǎn)的坐標(biāo);若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,圖1為三角形紙片ABC,點(diǎn)PAB上.若將紙片向內(nèi)折疊,如圖2所示,點(diǎn)AB、C恰能重合在點(diǎn)P處,折痕分別為SR、RQQT,折痕的交點(diǎn)R、Q分別在邊AC、BC上.若ABC、四邊形PTQR的面積分別是207,則RPS的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小磊要制作一個(gè)三角形的鋼架模型,在這個(gè)三角形中,長度為x(單位:cm)的邊與這條邊上的高之和為40 cm,這個(gè)三角形的面積S(單位:cm2)x(單位:cm)的變化而變化.

1)請直接寫出Sx之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);

2)當(dāng)x是多少時(shí),這個(gè)三角形面積S最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠A20°,∠ABC與∠ACB的平分線交于點(diǎn)D1,∠ABD1與∠ACD1的平分線交于點(diǎn)D2,以此類推,∠ABD2與∠ACD2的平分線交于點(diǎn)D,則∠BDC的度數(shù)是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點(diǎn)O是等邊三角形ABC內(nèi)一點(diǎn),∠AOB100°,∠BOCα,D是△ABC外一點(diǎn),且△ADC≌△BOC,連接OD

1)求證:△COD是等邊三角形;

2)當(dāng)α150°時(shí),判斷△AOD的形狀,并說明理由。

3)探究:當(dāng)α=_____度時(shí),△AOD是等腰三角形。

查看答案和解析>>

同步練習(xí)冊答案