【題目】如圖,在Rt△ABC中,∠ABC=90°,∠ACB=30°,AB=2cm,E、F分別是AB、AC的中點(diǎn),動(dòng)點(diǎn)P從點(diǎn)E出發(fā),沿EF方向勻速運(yùn)動(dòng),速度為1cm/s,同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿BF方向勻速運(yùn)動(dòng),速度為2cm/s,連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為ts(0<t<1),則當(dāng)t=___時(shí),△PQF為等腰三角形.
【答案】2﹣或.
【解析】
由勾股定理和含30°角的直角三角形的性質(zhì)先分別求出AC和BC,然后根據(jù)題意把PF和FQ表示出來,當(dāng)△PQF為等腰三角形時(shí)分三種情況討論即可.
解:∵∠ABC=90°,∠ACB=30°,AB=2cm,
∴AC=2AB=4cm,BC==2,
∵E、F分別是AB、AC的中點(diǎn),
∴EF=BC=cm,BF=AC=2cm,
由題意得:EP=t,BQ=2t,
∴PF=﹣t,FQ=2﹣2t,
分三種情況:
①當(dāng)PF=FQ時(shí),如圖1,△PQF為等腰三角形.
則﹣t=2﹣2t,
t=2﹣ ;
②如圖2,當(dāng)PQ=FQ時(shí),△PQF為等腰三角形,過Q作QD⊥EF于D,
∴PF=2DF,
∵BF=CF,
∴∠FBC=∠C=30°,
∵E、F分別是AB、AC的中點(diǎn),
∴EF∥BC,
∴∠PFQ=∠FBC=30°,
∵FQ=2﹣2t,
∴DQ=FQ=1﹣t,
∴DF= (1﹣t),
∴PF=2DF=2(1﹣t),
∵EF=EP+PF= ,
∴t+2(1﹣t)= ,
t= ;
③因?yàn)楫?dāng)PF=PQ時(shí),∠PFQ=∠PQF=30°,
∴∠FPQ=120°,
而在P、Q運(yùn)動(dòng)過程中,∠FPQ最大為90°,所以此種情況不成立;
綜上,當(dāng)t=2﹣或時(shí),△PQF為等腰三角形.
故答案為:2﹣ 或 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,四邊形中,.
(1)動(dòng)點(diǎn)從出發(fā),以每秒1個(gè)單位的速度沿路線運(yùn)動(dòng)到點(diǎn)停止,設(shè)運(yùn)動(dòng)時(shí)間為,的面積為關(guān)于的函數(shù)圖象如圖②所示,求的長.
(2)如圖③動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒2個(gè)單位的速度沿路線運(yùn)動(dòng)到點(diǎn)停止,同時(shí),動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒5個(gè)單位的速度沿路線運(yùn)動(dòng)到點(diǎn)停止,設(shè)運(yùn)動(dòng)時(shí)間為,當(dāng)點(diǎn)運(yùn)動(dòng)到邊上時(shí),連接,當(dāng)的面積為8時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,,,,E是BC的中點(diǎn),點(diǎn)P以每秒1個(gè)單位長度的速度從點(diǎn)A出發(fā),沿AD向點(diǎn)D運(yùn)動(dòng);點(diǎn)Q同時(shí)以每秒2個(gè)單位長度的速度從點(diǎn)C出發(fā),沿CB向點(diǎn)B運(yùn)動(dòng)當(dāng)點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也隨之停止運(yùn)動(dòng)當(dāng)運(yùn)動(dòng)時(shí)間為______秒時(shí),以點(diǎn)P、Q、E、D為頂點(diǎn)的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E是對(duì)角線BD上的一點(diǎn),過點(diǎn)C作CF∥DB,且CF=DE,連接AE,BF,EF.
(1)求證:△ADE≌△BCF;
(2)若∠ABE+∠BFC=180°,則四邊形ABFE是什么特殊四邊形?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】乘法公式的探究與應(yīng)用:
(1)如圖甲,邊長為a的大正方形中有一個(gè)邊長為b的小正方形,請(qǐng)你寫出陰影部分的面積是
(2)小顆將陰影部分接下來,重新拼成一個(gè)長方形,如圖乙,則長方形的長是 ,寬是 ,面積是 (寫成多項(xiàng)式乘法的形式).
(3)比較甲乙兩圖陰影部分的面積,可以得到恒等式
(4)運(yùn)用你所得到的公式計(jì)算:10.3×9.7.
(5)若49x2﹣y2=25,7x﹣y=5,則7x+y的值為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,E,F分別是AD,CD上兩點(diǎn),BE交AF于點(diǎn)G,且DE=CF.
(1)寫出BE與AF之間的關(guān)系,并證明你的結(jié)論;
(2)如圖2,若AB=2,點(diǎn)E為AD的中點(diǎn),連接GD,試證明GD是∠EGF的角平分線,并求出GD的長;
(3)如圖3,在(2)的條件下,作FQ∥DG交AB于點(diǎn)Q,請(qǐng)直接寫出FQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,E、F、G、H依次是各邊中點(diǎn),O是四邊形內(nèi)一點(diǎn),若S四邊形AEOH=3,S四邊形BFOE=4,S四邊形CGOF=5,則S四邊形DHOG= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】裝飾公司為小明家設(shè)計(jì)電視背景墻時(shí)需要A、B型板材若干塊,A型板材規(guī)格是ab,B型板材規(guī)格是bb.現(xiàn)只能購得規(guī)格是150b的標(biāo)準(zhǔn)板材.(單位:cm)
(1)若設(shè)a60cm,b30cm.一張標(biāo)準(zhǔn)板材盡可能多的裁出A型、B型板材,共有下表三種裁法,下圖是裁法一的裁剪示意圖.
裁法一 | 裁法二 | 裁法三 | |
A型板材塊數(shù) | 1 | 2 | 0 |
B型板材塊數(shù) | 3 | m | n |
則上表中, m=___________, n=__________;
(2)為了裝修的需要,小明家又購買了若干C型板材,其規(guī)格是aa,并做成如下圖的背景墻.請(qǐng)寫出下圖中所表示的等式:__________;
(3)若給定一個(gè)二次三項(xiàng)式2a25ab3b2,試用拼圖的方式將其因式分解.(請(qǐng)仿照(2)在幾何圖形中標(biāo)上有關(guān)數(shù)量)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com