【題目】如圖所示:已知∠ABC=120°,作等邊△ACD,將△ACD旋轉(zhuǎn)60°,得到△CDE,AB=3,BC=2,求BD和∠ABD.
【答案】BD=5.∠BAD=60°
【解析】
先根據(jù)等邊三角形的性質(zhì)得∠ADC=∠ACD=60°,由于∠ABC=120°,根據(jù)四邊形內(nèi)角和得到∠BAD+∠BCD=180°,則∠BAD+∠BCA=120°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠BAD=∠ECD,DB=DE,∠BDE=60°,AB=CE,于是有∠BCA+∠ECD+∠ACD=180°,得到B、C、E在同一條直線上,接著證明△BDE為等邊三角形得到∠DBE=60°,所以∠BAD=∠ABC﹣∠DBE=60°,BD=BE=BC+CE=BC+AB=5.
∵△ACD是等邊三角形,
∴∠ADC=∠ACD=60°,
∵∠ABC=120°,
∴∠BAD+∠BCD=180°,
∴∠BAD+∠BCA=120°,
∵△ABD繞點(diǎn)D按順時(shí)針方向旋轉(zhuǎn)60°后到△ECD的位置,
∴∠BAD=∠ECD,DB=DE,∠BDE=60°,AB=CE,
∴∠BCA+∠ECD=120°,
∴∠BCA+∠ECD+∠ACD=180°,
∴B、C、E在同一條直線上.
∵DB=DE,∠BDE=60°,
∴△BDE為等邊三角形,
∴∠DBE=60°,
∴∠BAD=∠ABC﹣∠DBE=60°,
∴BD=BE=BC+CE=BC+AB=3+2=5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,下列5個(gè)結(jié)論,其中正確的結(jié)論有( 。
①abc<0
②3a+c>0
③4a+2b+c<0
④2a+b=0
⑤b2>4ac
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某大學(xué)的樓門是一拋物線形水泥建筑物,大門的地面寬度為,兩側(cè)距離地面高處各有一個(gè)掛校名橫匾用的鐵環(huán),兩鐵環(huán)的水平距離為,則校門的高約為(精確到,水泥建筑物的厚度忽略不計(jì))( )
A. 9.2m B. 9.1m C. 9.0m D. 8.9m
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知MN∥EF∥BC,點(diǎn)A、D為直線MN上的兩動(dòng)點(diǎn),AD=a,BC=b,AE∶ED=m∶n;
(1)當(dāng)點(diǎn)A、D重合,即a=0時(shí)(如圖1),試求EF.(用含m,n,b的代數(shù)式表示)
(2)請(qǐng)直接應(yīng)用(1)的結(jié)論解決下面問題:當(dāng)A、D不重合,即a≠0,
①如圖2這種情況時(shí),試求EF.(用含a,b,m,n的代數(shù)式表示)
圖1
圖2
圖3
②如圖3這種情況時(shí),試猜想EF與a、b之間有何種數(shù)量關(guān)系?并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將正方形網(wǎng)格放置在平面直角坐標(biāo)系中,其中每個(gè)小正方形的邊長(zhǎng)均為1,△ABC經(jīng)過平移后得到△A1B1C1,若AC上一點(diǎn)P(1.2,1.4)平移后對(duì)應(yīng)點(diǎn)為P1,點(diǎn)P1繞原點(diǎn)順時(shí)針旋轉(zhuǎn)180°,對(duì)應(yīng)點(diǎn)為P2,則點(diǎn)P2的坐標(biāo)為( 。
A. (2.8,3.6) B. (﹣2.8,﹣3.6)
C. (3.8,2.6) D. (﹣3.8,﹣2.6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么下列判斷不正確的是( 。
A. ac<0 B. a﹣b+c>0 C. b=﹣4a D. a+b+c>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點(diǎn)在第一象限,且過點(diǎn)(0,1)和(﹣1,0),下列結(jié)論:①ab<0,②b2>4,③0<a+b+c<2,④0<b<1,⑤當(dāng)x>﹣1時(shí),y>0.其中正確結(jié)論的個(gè)數(shù)是( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結(jié)論:①ac>0;②a﹣b+c<0;③當(dāng)x<0時(shí),y<0;④方程ax2+bx+c=0(a≠0)有兩個(gè)大于﹣1的實(shí)數(shù)根.其中正確的結(jié)論有( )
A. ①③ B. ②③ C. ①④ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖工程上常用鋼珠來(lái)測(cè)量零件上小圓孔的寬口,假設(shè)鋼珠的直徑是10mm,測(cè)得鋼珠頂端離零件表面的距離為8mm,如圖所示.則這個(gè)小圓孔的寬口AB的長(zhǎng)度是( 。
A. 5mm B. 6mm C. 8mm D. 10mm
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com