【題目】如圖,在Rt△ABC中,∠C=90°,AB=50,AC=30,D、E、F分別是AC、AB、BC的中點(diǎn).點(diǎn)P從點(diǎn)D出發(fā)沿折線DE﹣EF﹣FC﹣CD以每秒7個(gè)單位長(zhǎng)的速度勻速運(yùn)動(dòng);點(diǎn)Q從點(diǎn)B出發(fā)沿BA方向以每秒4個(gè)單位長(zhǎng)的速度勻速運(yùn)動(dòng),過(guò)點(diǎn)Q作射線QK⊥AB,交折線BC﹣CA于點(diǎn)G.點(diǎn)P、Q同時(shí)出發(fā),當(dāng)點(diǎn)P繞行一周回到點(diǎn)D時(shí)停止運(yùn)動(dòng),點(diǎn)Q也隨之停止.設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間是t秒(t>0).
(1)當(dāng)點(diǎn)P在DE上,若S△PBQ=,求t的值.
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到折線EF﹣FC上,且點(diǎn)P又恰好落在射線QK上時(shí),求t的值;
(3)連結(jié)PG,當(dāng)PG∥AB時(shí),請(qǐng)直接寫(xiě)出t的值.
【答案】(1)t1=2,t2=;(2)t1=4;t2=7;(3)t1=;t2=7.
【解析】
(1)由勾股定理和三角形中位線定理可求DE的長(zhǎng),由銳角三角函數(shù)可求PH的長(zhǎng),由三角形面積公式可求解;
(2)①當(dāng)點(diǎn)P在EF上(≤t≤5時(shí)根據(jù)△PQE∽△BCA,根據(jù)相似三角形的對(duì)應(yīng)邊的比相等,可以求出t的值;
②當(dāng)點(diǎn)P在FC上(5≤t≤)時(shí),PB=PF+BF就可以得到;
(3)當(dāng)PG∥AB時(shí)四邊形PHQG是矩形,由此可以直接寫(xiě)出t.
解:(1)如圖1,過(guò)點(diǎn)P作PH⊥AB于H,
∵∠C=90°,AB=50,AC=30,
∴BC===40,
∵D、E、F分別是AC、AB、BC的中點(diǎn),
∴DE=BC=20,DE∥BC,EF∥AC,
∴∠AED=∠ABC,
∴sin∠AED=sin∠ABC=,
∴
∴PH=(20﹣7t)
∴S△PBQ=×4t×(20﹣7t)=
∴t1=2,t2=;
(2)①當(dāng)點(diǎn)P在EF上(≤t≤5)時(shí),
如圖2,QB=4t,DE+EP=7t,
∵EF∥AC,
∴∠FEB=∠A,且∠PQE=∠ACB,
∴△PQE∽△BCA,
∴
∴
∴t=4;
②當(dāng)點(diǎn)P在FC上(5≤t≤)時(shí),
如圖3,已知QB=4t,從而PB===5t,
由PF=7t﹣35,BF=20,得5t=7t﹣35+20.
解得t=7;
(3)PG∥AB可分為以下幾種情形:
當(dāng)0<t≤時(shí),點(diǎn)P下行,點(diǎn)G上行,可知其中存在PG∥AB的時(shí)刻,如圖4;此后,點(diǎn)G繼續(xù)上行到點(diǎn)F時(shí),t=4,而點(diǎn)P卻在下行到點(diǎn)E再沿EF上行,發(fā)現(xiàn)點(diǎn)P在EF上運(yùn)動(dòng)時(shí)不存在PG∥AB;當(dāng)5≤t≤時(shí),點(diǎn)P,G均在FC上,也不存在PG∥AB;由于點(diǎn)P比點(diǎn)G先到達(dá)點(diǎn)C并繼續(xù)沿CD下行,所以在<t<8中存在PG∥AB的時(shí)刻,如圖5,當(dāng)8≤t≤10時(shí),點(diǎn)P,G均在CD上,不存在PG∥AB.
∴當(dāng)0<t≤時(shí),點(diǎn)P下行,點(diǎn)G上行,可知其中存在PG∥AB的時(shí)刻,如圖4;過(guò)點(diǎn)P作PH⊥AB,
∵PG∥AB,PH∥GQ
∴四邊形PGQH是平行四邊形,且PH⊥AB,
∴四邊形PGQH是矩形,
∴PH=GQ,且∠B=∠AED,∠PHE=∠GQB=90°,
∴△PHE≌△GQB(AAS)
∴HE=QB
∵cos∠AED=cos∠ABC=,
∴
∴HE=(20﹣7t)
∴(20﹣7t)=4t,
∴t=;
當(dāng)在<t<8中存在PG∥AB的時(shí)刻,如圖5,過(guò)點(diǎn)P作PH⊥AB,
∴四邊形PGHQ是矩形,
∴PH=GQ
∵PH==(85﹣7t),GQ===3t,
∴(85﹣7t)=3t
∴t=7.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,tan∠BAC=2,A(0,a),B(b,0),點(diǎn)C在第二象限,BC與y軸交于點(diǎn)D(0,c),若y軸平分∠BAC,則點(diǎn)C的坐標(biāo)不能表示為( 。
A. (b+2a,2b) B. (﹣b﹣2c,2b)
C. (﹣b﹣c,﹣2a﹣2c) D. (a﹣c,﹣2a﹣2c)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一直角坐標(biāo)系中,函數(shù)y=mx+m和函數(shù)y=mx2+2x+2 (m是常數(shù),且m≠0)的圖象可能是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,四邊形是矩形,點(diǎn),點(diǎn),點(diǎn).以點(diǎn)為中心,順時(shí)針旋轉(zhuǎn)矩形,得到矩形,點(diǎn)的對(duì)應(yīng)點(diǎn)分別為,記旋轉(zhuǎn)角為.
(1)如圖①,當(dāng)時(shí),求點(diǎn)的坐標(biāo);
(2)如圖②,當(dāng)點(diǎn)落在的延長(zhǎng)線上時(shí),求點(diǎn)的坐標(biāo);
(3)當(dāng)點(diǎn)落在線段上時(shí),求點(diǎn)的坐標(biāo)(直接寫(xiě)出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過(guò)點(diǎn)O作OF⊥BC于F,若BD=8cm,AE=2cm,
(1)求⊙O的半徑;
(2)求O到弦BC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是⊙的弦,交于點(diǎn),過(guò)點(diǎn)的直線交的延長(zhǎng)線于點(diǎn),且是⊙的切線.
(1)判斷的形狀,并說(shuō)明理由;
(2)若,求的長(zhǎng);
(3)設(shè)的面積是的面積是,且.若⊙的半徑為,求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某中學(xué)一幢教學(xué)樓的頂部豎有一塊寫(xiě)有“校訓(xùn)”的宣傳牌,米,王老師用測(cè)傾器在點(diǎn)測(cè)得點(diǎn)的仰角為,再向教學(xué)樓前進(jìn)9米到達(dá)點(diǎn),測(cè)得點(diǎn)的仰角為,若測(cè)傾器的高度米,不考慮其它因素,求教學(xué)樓的高度.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E,F分別在BC,CD上,AE=AF,AC與EF相交于點(diǎn)G.下列結(jié)論:①AC垂直平分EF;②BE+DF=EF;③當(dāng)∠DAF=15°時(shí),△AEF為等邊三角形;④當(dāng)∠EAF=60°時(shí),S△ABE=S△CEF.其中正確的是( 。
A. ①③B. ②④C. ①③④D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在△EFG中,∠EFG=90°,EF=FG,且點(diǎn)E,F分別在矩形ABCD的邊AB,AD上.
(1)如圖1,當(dāng)點(diǎn)G在CD上時(shí),求證:△AEF≌△DFG;
(2)如圖2,若F是AD的中點(diǎn),FG與CD相交于點(diǎn)N,連接EN,求證:EN=AE+DN;
(3)如圖3,若AE=AD,EG,FG分別交CD于點(diǎn)M,N,求證:MG2=MNMD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com