【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2經(jīng)過平移得到拋物線y=ax2+bx,其對稱軸與兩段拋物線所圍成的陰影部分的面積為,則a、b的值分別為( )
A. , B. ,﹣ C. ,﹣ D. ﹣,
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程(x-3)(x-5)=m(m>0)有兩個實數(shù)根,( < ),則下列選項正確的是( )
A. 3<<<5 B. 3<<5< C. <2< <5 D. <3且 >5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在一次打籃球時,籃球傳出后的運動路線為如圖所示的拋物線,以小明所站立的位置為原點O建立平面直角坐標(biāo)系,籃球出手時在O點正上方1m處的點P.已知籃球運動時的高度y(m)與水平距離x(m)之間滿足函數(shù)表達式y=-x2+x+c.
(1)求y與x之間的函數(shù)表達式;
(2)球在運動的過程中離地面的最大高度;
(3)小亮手舉過頭頂,跳起后的最大高度為BC=2.5m,若小亮要在籃球下落過程中接到球,求小亮離小明的最短距離OB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,點E,F(xiàn)在邊BC上,BE=CF,點D在AF的延長線上,AD=AC.
(1)求證:△ABE≌△ACF;
(2)若∠BAE=30°,則∠ADC= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(-1,0),B(1,0),C為y軸正半軸上一點,點D為第三象限一動點,CD交AB于F,且∠ADB=2∠BAC,
(1)求證:∠ADB與∠ACB互補;
(2)求證:CD平分∠ADB;
(3)若在D點運動的過程中,始終有DC=DA+DB,在此過程中,∠BAC的度數(shù)是否變化?如果變化,請說明理由;如果不變,請求出∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,2)與(0,3)之間(不包括這兩點),對稱軸為直線x=2.下列結(jié)論:abc<0;②9a+3b+c>0;③若點M(,y1),點N(,y2)是函數(shù)圖象上的兩點,則y1<y2;④﹣<a<﹣.其中正確結(jié)論有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的方程.
若是方程的一個根,求的值和方程的另一根;
當(dāng)為何實數(shù)時,方程有實數(shù)根;
若,是方程的兩個根,且,試求實數(shù)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知中,,,動點在的延長線上運動,動點在的
延長線上運動,且保持的值為.設(shè),.
求與之間的函數(shù)關(guān)系式;
用描點法畫出中函數(shù)的圖象;
已知直線與中函數(shù)圖象的交點坐標(biāo)是,求的值;
求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com