【題目】如圖,的直徑,點(diǎn)和點(diǎn)上的兩點(diǎn),過(guò)點(diǎn)的切線交延長(zhǎng)線于點(diǎn)

Ⅰ.若,求的度數(shù);

Ⅱ.若,求的度數(shù).

【答案】Ⅰ. 40°;Ⅱ. 30°

【解析】

Ⅰ.連接OA,根據(jù)圓周角定理求出∠AOC,根據(jù)切線的性質(zhì)求出∠OAC,根據(jù)三角形內(nèi)角和定理求出即可;

Ⅱ.根據(jù)OA=OB,得出∠B=C=BAO,再根據(jù)三角形的外角可得出∠AOC=2C,再根據(jù)直角三角形的兩個(gè)銳角互余,得出∠C=30°,從而得出∠AOC的度數(shù),根據(jù)圓周角定理求出即可

解:(1)連接OA,


∵∠ADE=25°,
∴由圓周角定理得:∠AOC=2ADE=50°,
AC切⊙OA,
∴∠OAC=90°
∴∠C=180°-AOC-OAC=180°-50°-90°=40°;

Ⅱ. AB=AC,
∴∠B=C
OA=OB,
∴∠BAO=B,

∵∠AOC=B+BAO

∴∠AOC=2B
∴∠AOC=2C,
∵∠OAC=90°
∴∠AOC+C=90°,
3C=90°,
∴∠C=30°,

∴∠AOC=60°

∴由圓周角定理得:AOC=30°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P和⊙C,給出如下定義:若⊙C上存在一個(gè)點(diǎn)M,使得MP=MC,則稱點(diǎn)P為⊙C的“等徑點(diǎn)”,已知點(diǎn)D(,),E(0,2),F(xiàn)(﹣2,0).

(1)當(dāng)⊙O的半徑為1時(shí),

①在點(diǎn)D,E,F(xiàn)中,⊙O的“等徑點(diǎn)”是哪幾個(gè)點(diǎn);

②作直線EF,若直線EF上的點(diǎn)T(m,n)是⊙O的“等徑點(diǎn)”,求m的取值范圍.

(2)過(guò)點(diǎn)E作EG⊥EF交x軸于點(diǎn)G,若△EFG各邊上所有的點(diǎn)都是某個(gè)圓的“等徑點(diǎn)”,求這個(gè)圓的半徑r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一輛超市購(gòu)物車放置在水平地面上,其側(cè)面四邊形ABCD與地面某條水平線l在同一平面內(nèi),且ABl,若∠A=93°,∠D=111°,則直線CDl所夾銳角的度數(shù)為(

A. 15°B. 18°C. 21°D. 24°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸交于兩點(diǎn),是以點(diǎn)0,3)為圓心,2為半徑的圓上的動(dòng)點(diǎn),是線段的中點(diǎn),連結(jié).則線段的最大值是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是菱形的對(duì)角線,分別是邊的中點(diǎn),連接,,則下列結(jié)論錯(cuò)誤的是( )

A. B. C. 四邊形是菱形D. 四邊形是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】金蛋游戲:把210個(gè)金蛋連續(xù)編號(hào)為1,2,3,210,接著把編號(hào)是3的整數(shù)倍的金蛋全部砸碎;然后將剩下的金蛋重新連續(xù)編號(hào)為1,23,,接著把編號(hào)是3的整數(shù)倍的金蛋全部砸碎……按照這樣的方法操作,直到無(wú)編號(hào)是3的整數(shù)倍的金蛋為止.操作過(guò)程中砸碎編號(hào)是“66”金蛋_____個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料,解答問(wèn)題:

為解方程,我們可以將視為一個(gè)整體,然后設(shè),則,原方程可化為,解此方程得.當(dāng)時(shí),,∴;當(dāng)時(shí),,∴,∴原方程的解為.

(1)填空:在原方程得到方程(*)的過(guò)程中,利用________法達(dá)到了降次的目的,體現(xiàn)了________的數(shù)學(xué)思想;

(2)解方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,工人師傅用一塊長(zhǎng)為10分米,寬為6分米的矩形鐵皮制作一個(gè)無(wú)蓋的長(zhǎng)方體容器,需要將四角各裁掉一個(gè)正方形;(厚度不計(jì))

1)當(dāng)長(zhǎng)方體底面面積為12平方分米時(shí),裁掉的正方形邊長(zhǎng)為______分米;

2)若要求制作的長(zhǎng)方體的底面長(zhǎng)不大于底面寬的5倍,且將容器的外表面進(jìn)行防銹處理,其側(cè)面處理費(fèi)用為0.5/平方分米,底面處理費(fèi)用為2/平方分米;求:裁掉的正方形邊長(zhǎng)為多大時(shí),防銹處理總費(fèi)用最低,最低為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,若要在寬AD20米的城南大道兩邊安裝路燈,路燈的燈臂BC長(zhǎng)2米,且與燈柱AB120°角,路燈采用圓錐形燈罩,燈罩的軸線CO與燈臂BC垂直,當(dāng)燈罩的軸線CO通過(guò)公路路面的中心線時(shí)照明效果最好,此時(shí),路燈的燈柱AB高應(yīng)該設(shè)計(jì)為多少米(結(jié)果保留根號(hào))?

查看答案和解析>>

同步練習(xí)冊(cè)答案