【題目】在平面直角坐標(biāo)系中,已知Aa,b),B2,2),且|a-b+8|+=0

1)求點(diǎn)A的坐標(biāo);

2)過點(diǎn)AACx軸于點(diǎn)C,連接BC,AB,延長(zhǎng)ABx軸于點(diǎn)D,設(shè)ABy軸于點(diǎn)E,那么ODOE是否相等?請(qǐng)說明理由.

3)在x軸上是否存在點(diǎn)P,使SOBP=SBCD?若存在,請(qǐng)求出P點(diǎn)坐標(biāo),若不存在,請(qǐng)說明理由.

【答案】1)點(diǎn)A的坐標(biāo)為(-2,6);(2ODOE相等.理由見解析;(3)存在. P-60)或(6,0).

【解析】

(1)利用非負(fù)數(shù)的性質(zhì)解決問題即可.

(2)如圖2,OD與OE相等.通過計(jì)算證明OE=4,OD=4即可解決問題.

(3)假設(shè)存在.設(shè)P(m,0),構(gòu)建方程求出m即可解決問題.

(1)由|a-b+8|+ =0,

,

解得:

∴點(diǎn)A的坐標(biāo)為(-2,6);

(2)如圖2,OD與OE相等.理由如下:

設(shè)點(diǎn)D的坐標(biāo)為(x,0)(x>0),點(diǎn)E的坐標(biāo)為(0,y)(y>0),

則CD=x+2,OE=y,

因?yàn),三角形ABC的面積=三角形ACD的面積-三角形BCD的面積,

所以,12=×(x+2)×6-×(x+2)×2=2(x+2),

解得,x=4,即OD=4.

又因?yàn),三角形EOD的面積=三角形ACD的面積-梯形ACOE的面積,

所以,×4×y=×6×6-×(y+6)×2,

解得:y=4,即OE=4,

所以,OD=OE.

(3)存在.設(shè)P(m,0),

由題意:|m|×2=6,

解得m=±6,

∴P(-6,0)或(6,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB與CD相交于點(diǎn)O, ∠AOM=90°,

(1)如圖1,若OC平分∠AOM.求∠AOD的度數(shù);

(2)如圖2,若∠BOC=4∠NOB,且OM平分∠NOC,求∠MON的度數(shù);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,E為平行四邊形內(nèi)部一點(diǎn),連接AE,BE,CE

1)如圖1,AEBCBC于點(diǎn)F,已知∠EBC45°,∠BAF=∠ECFAB,EF1,求AD的長(zhǎng);

2)如圖2AECDCD于點(diǎn)F,AECF且∠BEC90°,GAB上一點(diǎn),作GPBEGPCE,并以BG為斜邊作等腰RtBGH,連接EP、EH.求證:EPEH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將長(zhǎng)方形ABCD沿著對(duì)角線BD折疊,使點(diǎn)C落在C′處,BC′交AD于點(diǎn)E.

(1)若∠DBC=25°,求∠ADC′的度數(shù);

(2)若AB=4,AD=8,求△BDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC 中,BAC=90°,AB=AC=2,以 AC 為一邊.在ABC 外部作等腰直角三角形ACD ,則線段 BD 的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC=BDE、FG、H分別是ABBC、CD、DA的中點(diǎn),且EGFH交于點(diǎn)O.若AC=4,則EG2+FH2=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在班上組織的一次晚會(huì)中,小麗和小芳都想當(dāng)節(jié)目主持人,但現(xiàn)在只有一個(gè)名額.小芳想出了一個(gè)用游戲來選人的辦法,她將一個(gè)轉(zhuǎn)盤平均分成6份,如圖所示.游戲規(guī)定:隨意轉(zhuǎn)動(dòng)轉(zhuǎn)盤,若指針指到偶數(shù),則小麗去;若指針指到奇數(shù),則小芳去.

1)指針指到偶數(shù)的概率是多少?指針指到奇數(shù)的概率是多少?

2)這個(gè)游戲?qū)﹄p方公平嗎?為什么?若游戲不公平,請(qǐng)你修改轉(zhuǎn)盤中的數(shù)字,使得游戲?qū)﹄p方公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(10,0),C(0,4),點(diǎn)D是OA的中點(diǎn),動(dòng)點(diǎn)P在線段BC上以每秒2個(gè)單位長(zhǎng)的速度由點(diǎn)C向B 運(yùn)動(dòng).設(shè) 動(dòng)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒

(1)當(dāng)t為何值時(shí),四邊形PODB是平行四邊形?

(2)在直線CB上是否存在一點(diǎn)Q,使得O、D、Q、P四點(diǎn)為頂點(diǎn)的四邊形是菱形?若存在,求t的值,并求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由。

(3) 在線段PB上有一點(diǎn)M,且PM=5,當(dāng)P運(yùn)動(dòng) 秒時(shí),四邊形OAMP的周長(zhǎng)最小, 并畫圖標(biāo)出點(diǎn)M的位置。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC在方格紙中

(1)請(qǐng)?jiān)诜礁窦埳辖⑵矫嬷苯亲鴺?biāo)系,使A(2,3),C(6,2),并求出B點(diǎn)坐標(biāo);

(2)以原點(diǎn)O為位似中心,相似比為2,在第一象限內(nèi)將ABC放大,畫出放大后的圖形ABC;

(3)計(jì)算ABC的面積S.

查看答案和解析>>

同步練習(xí)冊(cè)答案