【題目】某景區(qū)有一圓形人工湖,為測量該湖的半徑,小明和小麗沿湖邊選取,,三棵小樹(如圖所示),使得,之間的距離與,之間的距離相等,并測得長為米,到的距離為米,則人工湖的半徑為________米.
【答案】
【解析】
設(shè)圓心為點(diǎn)O,連接OB,OA,AB=AC,得出=,再根據(jù)等弦對等弧,得出點(diǎn)A是弧BC的中點(diǎn).結(jié)合垂徑定理的推論,知OA垂直平分弦.在Rt△BDO中,利用勾股定理,即可求得圓的半徑.
設(shè)圓心為點(diǎn)O,連接OB,OA,OA交線段BC于點(diǎn)D.
∵AB=AC,∴=,∴OA⊥BC,∴BD=DC=BC=100米,由題意,DA=5米.
在Rt△BDO中,OB2=OD2+BD2,設(shè)OB=x米,則x2=(x﹣5)2+1002
解得:x=1002.5.
故人工湖的半徑為1002.5米.
故答案為:1002.5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張平行四邊形紙片ABCD沿著線段EF折疊(點(diǎn)E、F分別在AB邊和BC邊上),使得點(diǎn)C落在點(diǎn)A處,點(diǎn)D落在點(diǎn)G出。
(1)如果連接EC,那么線段GE與EC在同一條直線上嗎?為什么?
(2)試判斷四邊形AFCE的形狀,并說明你是怎樣判斷的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)的圖象經(jīng)過點(diǎn).
(1)若函數(shù)圖象經(jīng)過原點(diǎn),求k,b的值
(2)若點(diǎn)是該函數(shù)圖象上的點(diǎn),當(dāng)時,總有,且圖象不經(jīng)過第三象限,求k的取值范圍.
(3)點(diǎn)在函數(shù)圖象上,若,求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一幅三角板拼成如圖所示的圖形,過點(diǎn)C作CF平分∠DCE交DE于點(diǎn)F.
(1)求證:CF∥AB.
(2)求∠DFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是的直徑,,、分別與圓相交于、,那么下列等式中一定成立的是( )
A. AEBF=AFCF B. AEAB=AOAD'
C. AEAB=AFAC D. AEAF=AOAD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】知識鏈接:將兩個含30°角的全等三角尺放在一起,讓兩個30°角合在一起成60°,經(jīng)過拼湊、觀察、思考,探究出“直角三角形中30°角所對的直角邊等于斜邊的一半”結(jié)論.
如圖:等邊三角形ABC的邊長為4cm,點(diǎn)D從點(diǎn)C出發(fā)沿CA向A運(yùn)動,點(diǎn)E從B出發(fā)沿AB的延長線BF向右運(yùn)動,已知點(diǎn)D、E都以每秒0.5cm的速度同時開始運(yùn)動,運(yùn)動過程中DE與BC相交于點(diǎn)P,設(shè)運(yùn)動時間為x秒.
(1)請直接寫出AD長.(用x的代數(shù)式表示)
(2)當(dāng)△ADE為直角三角形時,運(yùn)動時間為幾秒?
(2)求證:在運(yùn)動過程中,點(diǎn)P始終為線段DE的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在矩形中,,,四邊形的三個頂點(diǎn)、、分別在矩形邊、、上,.
如圖,當(dāng)四邊形為正方形時,求的面積;
如圖,當(dāng)四邊形為菱形時,設(shè),的面積為,求關(guān)于的函數(shù)關(guān)系式,并寫出函數(shù)的定義域.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰三角形ABC中,AB=AC,AH⊥BC,點(diǎn)E是AH上一點(diǎn),延長AH至點(diǎn)F,使FH=EH.
(1)求證:四邊形EBFC是菱形;
(2)如果∠BAC=∠ECF,求證:AC⊥CF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com