解方程:
(1)4-3x=6-5x;           
(2)
x+1
2
-1=
2-x
3
考點(diǎn):解一元一次方程
專(zhuān)題:計(jì)算題
分析:(1)方程移項(xiàng)合并,將x系數(shù)化為1,即可求出解;
(2)方程去分母,去括號(hào),移項(xiàng)合并,將x系數(shù)化為1,即可求出解.
解答:解:(1)4-3x=6-5x,
移項(xiàng),得 5x-3x=6-4,
合并同類(lèi)項(xiàng),得2x=2,
系數(shù)化為1,得x=1;
(2)去分母,得3(x+1)-6=2(2-x),
去括號(hào),得3x+3-6=4-2x,
移項(xiàng)、合并同類(lèi)項(xiàng),得5x=7,
系數(shù)化為1,得x=
7
5
點(diǎn)評(píng):此題考查了解一元一次方程,其步驟為:去分母,去括號(hào),移項(xiàng)合并,將未知數(shù)系數(shù)化為1,求出解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知由點(diǎn)P(14,1),A(a,0),B(0,a)確定的△PAB的面積是18,則a=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的不等式1-|x|>ax的解集中有無(wú)窮多個(gè)整數(shù),則a的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

今天夏天,浙江省遭遇了持續(xù)高溫,導(dǎo)致茶葉大幅減產(chǎn),因而造成價(jià)格上漲,每千克的價(jià)格是去年同期的2倍.茶農(nóng)陳某今年第三季度的茶葉產(chǎn)量為120千克,比去年同期減少了40%,但銷(xiāo)售收入?yún)s比去年同期增加了2000元.
(1)茶農(nóng)陳某去年第三季度的茶葉產(chǎn)量為
 
千克.
(2)根據(jù)題意,甲、乙兩名同學(xué)分別列出尚不完整的方程如下:
甲:(  )×2x-( 。義=2000;     乙:
2(x-2000)
(          )
=
x
(           )

根據(jù)甲、乙兩名同學(xué)所列的方程,請(qǐng)你分別指出未知數(shù)x表示的意義,然后在方框中補(bǔ)全甲、乙兩名同學(xué)所列的方程.
甲:x表示
 
,乙:x表示
 

(3)陳某今年第三季度茶葉銷(xiāo)售收入為多少元?(寫(xiě)出完整的解答過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某相宜本草護(hù)膚品專(zhuān)柜計(jì)劃在春節(jié)前夕促銷(xiāo)甲、乙兩款護(hù)膚品,根據(jù)市場(chǎng)調(diào)研,發(fā)現(xiàn)如下兩種信息:
信息一:銷(xiāo)售甲款護(hù)膚品所獲利潤(rùn)y(元)與銷(xiāo)售量x(件)之間存在二次函數(shù)關(guān)系y=ax2+bx.在x=10時(shí),y=140;當(dāng)x=30時(shí),y=360.
信息二:銷(xiāo)售乙款護(hù)膚品所獲利潤(rùn)y(元)與銷(xiāo)售量x(件)之間存在正比例函數(shù)關(guān)系y=3x.請(qǐng)根據(jù)以上信息,解答下列問(wèn)題;
(1)求信息一中二次函數(shù)的表達(dá)式;
(2)該相宜本草護(hù)膚品專(zhuān)柜計(jì)劃在春節(jié)前夕促銷(xiāo)甲、乙兩款護(hù)膚品共100件,請(qǐng)?jiān)O(shè)計(jì)一個(gè)營(yíng)銷(xiāo)方案,使銷(xiāo)售甲、乙兩款護(hù)膚品獲得的利潤(rùn)之和最大,并求出最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)
3-0.125
-
2
1
4
+
1.44

(2)
a2+2a+1
a2-9
a2+3a
a+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察下列各式:-1×
1
2
=-1+
1
2
   -
1
2
×
1
3
=-
1
2
+
1
3
   -
1
3
×
1
4
=-
1
3
+
1
4

(1)猜想-
1
n-1
×
1
n
=
 

(2)用你發(fā)現(xiàn)的規(guī)律計(jì)算:
(-1×
1
2
)+(-
1
2
×
1
3
)+(-
1
3
×
1
4
)+…+(-
1
2013
×
1
2014
)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角三角形ABC中,∠ABC=90°,點(diǎn)D在BC的延長(zhǎng)線上,且BD=AB,過(guò)B作BE⊥AC,與BD的垂線DE交于點(diǎn)E.求證:△ABC≌△BDE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中直線y=x-2與y軸相交于點(diǎn)A,與反比例函數(shù)在第一象限內(nèi)的圖象相交于點(diǎn)B(m,2).將直線y=x-2向上平移后與反比例函數(shù)圖象在第一象限內(nèi)交于點(diǎn)C,且△ABC的面積為18,求平移后的直線的函數(shù)關(guān)系式是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案