【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=axb的圖象交于C(4,3),E(3,4)兩點.且一次函數(shù)圖象交y軸于點A.

(1)求反比例函數(shù)與一次函數(shù)的解析式;

(2)求COE的面積;

(3)點M在x軸上移動,是否存在點M使OCM為等腰三角形?若存在,請你直接寫出M點的坐標(biāo);若不存在,請說明理由.

【答案】(1)一次函數(shù)的解析式為y=x+1.

(2)SCOE=SAOE+SAOC=×1×3+×1×4=3.5.

(3)點M坐標(biāo)為M1(8,0)或M2(5,0)或M35,0)或M4,0).

【解析】

試題分析:(1)點C(4,3)坐標(biāo)代入反比例函數(shù)y=即可求出k,C(4,3),E(3,4)兩點坐標(biāo)代入y=ax+b解方程組即可求出a、b.由此即可解決問題.

(2)先求出點A坐標(biāo),根據(jù)SCOE=SAOE+SAOC計算即可.

(3)分三種情形當(dāng)CM=OC時,可得M1(8,0).當(dāng)OC=OM時,可得M2(5,0),M35,0).當(dāng)MC=MO時,設(shè)M4(x,0),則有x2=(x4)2+32,解方程即可.

試題解析:(1)反比例函數(shù)y=的圖象經(jīng)過點C(4,3),

∴﹣3=,k=12,反比例函數(shù)解析式為y=

y=ax+b的圖象經(jīng)過C(4,3),E(3,4)兩點,

,解得,一次函數(shù)的解析式為y=x+1.

(2)一次函數(shù)的解析式為y=x+1與y軸交于點A(0,1),SCOE=SAOE+SAOC=×1×3+×1×4=3.5.

(3)如圖,C(4,3),OC==5,

當(dāng)CM=OC時,可得M1(8,0).當(dāng)OC=OM時,可得M2(5,0),M35,0).

當(dāng)MC=MO時,設(shè)M4(x,0),則有x2=(x4)2+32,解得x=,M4,0).

綜上所述,點M坐標(biāo)為M1(8,0)或M2(5,0)或M35,0)或M4,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】第二十四屆冬季奧林匹克運動會將與2022220日在北京舉行,北京將成為歷史上第一座舉辦過夏奧會又舉辦過冬奧會的城市,東寶區(qū)舉辦了一次冬奧會知識網(wǎng)上答題競賽,甲、乙兩校各有400名學(xué)生參加活動,為了解這兩所學(xué)校的成績情況,進行了抽樣調(diào)查,過程如下,請補充完整.

(收集數(shù)據(jù))

從甲、乙兩校各隨機抽取20名學(xué)生,在這次競賽中它們的成績?nèi)缦拢?/span>

30

60

60

70

60

80

30

90

100

60

60

100

80

60

70

60

60

90

60

60

80

90

40

60

80

80

90

40

80

50

80

70

70

70

70

60

80

50

80

80

(整理、描述數(shù)據(jù))按如下分數(shù)段整理、描述這兩組樣本數(shù)據(jù):

(說明:優(yōu)秀成績?yōu)?/span>80<x≤100,良好成績?yōu)?/span>50<x≤80,合格成績?yōu)?/span>30≤x≤50.)

學(xué)校

平均分

中位數(shù)

眾數(shù)

67

60

60

70

75

a

30≤x≤50

50<x≤80

80<x≤100

2

14

4

4

14

2

(分析數(shù)據(jù))兩組樣本數(shù)據(jù)的平均分、中位數(shù)、眾數(shù)如右表所示:其中a=  

(得出結(jié)論)

(1)小偉同學(xué)說:這次競賽我得了70分,在我們學(xué)校排名屬中游略偏上!由表中數(shù)據(jù)可知小明是  校的學(xué)生;(填”)

(2)老師從乙校隨機抽取一名學(xué)生的競賽成績,試估計這名學(xué)生的競賽成績?yōu)閮?yōu)秀的概率為  ;

(3)根據(jù)以上數(shù)據(jù)推斷一所你認為競賽成績較好的學(xué)校,并說明理由.(至少從兩個不同的角度說明推斷的合理性)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線經(jīng)過點,與y軸交于點B,與拋物線的對稱軸交于點

1)求m的值;

2)求拋物線的頂點坐標(biāo);

3是線段AB上一動點,過點N作垂直于y軸的直線與拋物線交于點,(點P在點Q的左側(cè)).若恒成立,結(jié)合函數(shù)的圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知銳角△ABC內(nèi)接于OADBC于點D,連接AO

1)如圖1,求證:∠BAO=∠CAD;

2)如圖2,CEAB于點E,交AD于點F,過點OOHBC于點H,求證:AF2OH

3)如圖3,在(2)的條件下,若AFAO,tanBAOBC,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖△ABC中,∠C=90°,AB=5,BC=3,S、Q兩點同時分別從A、C出發(fā),點S以每秒2個單位的速度沿著AC向點C運動,點Q以每秒1個單位的速度沿著CB向點B運動.當(dāng)其中一點到達終點時,另一點也隨之停止運動

(1)求幾秒時SQ的長為2

(2)求幾秒時,△SQC的面積最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=12cm,BC=6cm,點P沿AB邊從點A開始向點B2cm/s的速度移動,點Q沿DA邊從點D開始向點A1cm/s的速度移動,如果P、Q同時出發(fā),用t(s)表示移動的時間(0≤t≤6),那么:

(1)當(dāng)t為何值時,△QAP是等腰直角三角形?

(2)當(dāng)t為何值時,以點Q、A、P為頂點的三角形與△ABC相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個斜拋物體的水平運動距離為xm),對應(yīng)的高度記為hm),且滿足hax2+bx2a(其中a0).已知當(dāng)x0時,h2;當(dāng)x10時,h2

1)求h關(guān)于x的函數(shù)表達式;

2)求斜拋物體的最大高度和達到最大高度時的水平距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(已知二次函數(shù)y=ax2+bx+c(a0)的圖象如圖所示,下列結(jié)論:①abc0;2a+b0;b2﹣4ac0;a﹣b+c0,其中正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,點D在半圓O上,AB13,AD5C是弧BD上的一個動點,連接AC,過D點作DHACH.連接BH,在點C移動的過程中,BH的最小值是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案