【題目】如圖,Rt△ABC中,∠C=90°,AC=BC,∠BAC的平分線AD交BC于點(diǎn)D,分別過點(diǎn)A作AE∥BC,過點(diǎn)B作BE∥AD,AE與BE相交于點(diǎn)E.若CD=2,則四邊形ADBE的面積是_____.
【答案】
【解析】
過D作DF⊥AB于F,根據(jù)角平分線的性質(zhì)得出DF=CD=2.由△ABC是等腰直角三角形得出∠ABC=45°,再證明△BDF是等腰直角三角形,求出BD=DF=2,BC=2+2=AC.易證四邊形ADBE是平行四邊形,得出AE=BD=2,然后根據(jù)平行四邊形ADBE的面積=BDAC,代入數(shù)值計(jì)算即可求解.
解:如圖,過D作DF⊥AB于F,
∵AD平分∠BAC,∠C=90°,
∴DF=CD=2.
∵Rt△ABC中,∠C=90°,AC=BC,
∴∠ABC=45°,
∴△BDF是等腰直角三角形,
∵BF=DF=2,BD=DF=2,
∴BC=CD+BD=2+2,AC=BC=2+2.
∵AE//BC,BE⊥AD,
∴四邊形ADBE是平行四邊形,
∴AE=BD=2,
∴平行四邊形ADBE的面積= .
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:
①4ac<b2;
②方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3;
③3a+c>0;
④當(dāng)y>0時(shí),x的取值范圍是﹣1≤x<3;
⑤當(dāng)x<0時(shí),y隨x增大而增大;
其中結(jié)論正確有_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知a2+b2=10,a+b=4,求a﹣b的值;
(2)關(guān)于x的代數(shù)式(ax﹣3)(2x+1)﹣4x2+m化簡(jiǎn)后不含有x2項(xiàng)和常數(shù)項(xiàng),且an+mn=1,求2n3﹣9n2+8n+2019的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是邊長(zhǎng)為4的正方形,E為AB的中點(diǎn),將△ADE繞點(diǎn)D沿逆時(shí)針方向旋轉(zhuǎn)后得到△DCF,連接EF,則EF的長(zhǎng)為( 。
A. 2 B. 2 C. 2 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)的圖象經(jīng)過點(diǎn)A(1,4)和點(diǎn)B.過點(diǎn)A作AC⊥x軸,垂足為點(diǎn)C,過點(diǎn)B作BD⊥y軸,垂足為點(diǎn)D,連結(jié)AB、BC、DC、DA.點(diǎn)B的橫坐標(biāo)為a(a>1)
(1)求k的值
(2)若△ABD的面積為4;
①求點(diǎn)B的坐標(biāo),
②在平面內(nèi)存在點(diǎn)E,使得以點(diǎn)A、B、C、E為頂點(diǎn)的四邊形是平行四邊形,直接寫出符合條件的所有點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC的頂點(diǎn)A、B在x軸上,點(diǎn)C在y軸上正半軸上,且
A(-1,0),B(4,0),∠ACB=90°.
(1)求過A、B、C三點(diǎn)的拋物線解析式;
(2)設(shè)拋物線的對(duì)稱軸l與BC邊交于點(diǎn)D,若P是對(duì)稱軸l上的點(diǎn),且滿足以P、C、D為頂點(diǎn)的三角形與△AOC相似,求P點(diǎn)的坐標(biāo);
(3)在對(duì)稱軸l和拋物線上是否分別存在點(diǎn)M、N,使得以A、O、M、N為頂點(diǎn)的四邊形是平行四邊形,若存在請(qǐng)直接寫出點(diǎn)M、點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.
圖1 備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,并解答其后的問題:
我國(guó)古代南宋數(shù)學(xué)家秦九韶在其所著書《數(shù)學(xué)九章》中,利用“三斜求積術(shù)”十分巧妙的解決了已知三角形三邊求其面積的問題,這與西方著名的“海倫公式”是完全等價(jià)的.我們也稱這個(gè)公式為“海倫秦九韶公式”,該公式是:設(shè)△ABC中,∠A、∠B、∠C所對(duì)的邊分別為a、b、c,△ABC的面積為S=.
(1)(舉例應(yīng)用)已知△ABC中,∠A、∠B、∠C所對(duì)的邊分別為a、b、c,且a=4,b=5,c=7,則△ABC的面積為 ;
(2)(實(shí)際應(yīng)用)有一塊四邊形的草地如圖所示,現(xiàn)測(cè)得AB=(2+4)m,BC=5m,CD=7m,AD=4m,∠A=60°,求該塊草地的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1的解析表達(dá)式為y=-3x+3,且l1與x軸交于點(diǎn)D,直線l2經(jīng)過點(diǎn)A,B,直線l1,l2,交于點(diǎn)C.
(1)求點(diǎn)D的坐標(biāo);
(2)求直線l2的解析表達(dá)式;
(3)求△ADC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店經(jīng)銷一種雙肩包,已知這種雙肩包的成本價(jià)為每個(gè)30元.市場(chǎng)調(diào)查發(fā)現(xiàn),這種雙肩包每天的銷售量y(單位:個(gè))與銷售單價(jià)x(單位:元)有如下關(guān)系:y=-x+60(30≤x≤60).
設(shè)這種雙肩包每天的銷售利潤(rùn)為w元.
(1)求w與x之間的函數(shù)解析式;
(2)這種雙肩包銷售單價(jià)定為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少元?
(3)如果物價(jià)部門規(guī)定這種雙肩包的銷售單價(jià)不高于48元,該商店銷售這種雙肩包每天要獲得200元的銷售利潤(rùn),銷售單價(jià)應(yīng)定為多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com