【題目】閱讀下列材料,并解答其后的問題:

我國古代南宋數(shù)學(xué)家秦九韶在其所著書《數(shù)學(xué)九章》中,利用“三斜求積術(shù)”十分巧妙的解決了已知三角形三邊求其面積的問題,這與西方著名的“海倫公式”是完全等價的.我們也稱這個公式為“海倫秦九韶公式”,該公式是:設(shè)△ABC中,∠A、∠B、∠C所對的邊分別為a、b、c,△ABC的面積為S

1)(舉例應(yīng)用)已知△ABC中,∠A、∠B、∠C所對的邊分別為ab、c,且a4,b5c7,則△ABC的面積為   ;

2)(實際應(yīng)用)有一塊四邊形的草地如圖所示,現(xiàn)測得AB=(2+4mBC5m,CD7mAD4m,∠A60°,求該塊草地的面積.

【答案】(1)(2)(12+24+5m2

【解析】

1)由已知△ABC的三邊a=4,b=5c=7,可知這是一個一般的三角形,故選用海倫-奏九韶公式求解即可;(2)過點DDEAB,垂足為E,連接BD.將所求四邊形的面積轉(zhuǎn)化為三個三角形的面積的和進(jìn)行計算。

1)解:△ABC的面積為S 4

故答案是:4;

2)解:如圖:過點DDEAB,垂足為E,連接BD(如圖所示)

RtADE中,

∵∠A60°,

∴∠ADE30°,

AEAD2

BEABAE2+424

DE

BD

SBCD

SABD

S四邊形ABCDSBCD+SABD

答:該塊草地的面積為(m2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了更好的治理西流湖水質(zhì),保護(hù)環(huán)境,市治污公司決定購買 10 臺污水處理設(shè)備.現(xiàn)有 AB 兩種型號的設(shè)備,其中每臺的價格,月處理污水量如下表:

A

B

價格(萬元/臺)

a

b

處理污水量(噸/月)

240

200

經(jīng)調(diào)查:購買一臺 A 型設(shè)備比購買一臺 B 型設(shè)備多 2 萬元,購買 2 A 型設(shè)備比購買 3 B 型設(shè)備少 6 萬元.

1)求 a,b 的值;

2)經(jīng)預(yù)算:市治污公司購買污水處理設(shè)備的資金不超過 105 萬元,你認(rèn)為該公司 有哪幾種購買方案;

3)在(2)問的條件下,若每月要求處理西流湖的污水量不低于 2040 噸,為了節(jié) 約資金,請你為治污公司設(shè)計一種最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系可中,直線yx+1y=﹣x+3交于點A,分別交x軸于點B和點C,點D是直線AC上的一個動點.

(1)求點A,B,C的坐標(biāo);

(2)在直線AB上是否存在點E使得四邊形EODA為平行四邊形?存在的話直接寫出的值,不存在請說明理由;

(3)當(dāng)△CBD為等腰三角形時直接寫出D坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠C90°,ACBC,∠BAC的平分線ADBC于點D,分別過點AAEBC,過點BBEAD,AEBE相交于點E.若CD2,則四邊形ADBE的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】614日是世界獻(xiàn)血日,某市采取自愿報名的方式組織市民義務(wù)獻(xiàn)血.獻(xiàn)血時要對獻(xiàn)血者的血型進(jìn)行檢測,檢測結(jié)果有“A”、“B”、“AB”、“O”4種類型.在獻(xiàn)血者人群中,隨機抽取了部分獻(xiàn)血者的血型結(jié)果進(jìn)行統(tǒng)計,并根據(jù)這個統(tǒng)計結(jié)果制作了兩幅不完整的圖表:

血型

A

B

AB

O

人數(shù)

   

10

5

   

(1)這次隨機抽取的獻(xiàn)血者人數(shù)為   人,m=   ;

(2)補全上表中的數(shù)據(jù);

(3)若這次活動中該市有3000人義務(wù)獻(xiàn)血,請你根據(jù)抽樣結(jié)果回答:

從獻(xiàn)血者人群中任抽取一人,其血型是A型的概率是多少?并估計這3000人中大約有多少人是A型血?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)探索發(fā)現(xiàn):如圖1,已知RtABC中,∠ACB90°,ACBC,直線l過點C,過點AADl,過點BBEl,垂足分別為D、E.求證:ADCE,CDBE

2)遷移應(yīng)用:如圖2,將一塊等腰直角的三角板MON放在平面直角坐標(biāo)系內(nèi),三角板的一個銳角的頂點與坐標(biāo)原點O重合,另兩個頂點均落在第一象限內(nèi),已知點M的坐標(biāo)為(1,3),求點N的坐標(biāo).

3)拓展應(yīng)用:如圖3,在平面直角坐標(biāo)系內(nèi),已知直線y=﹣3x+3y軸交于點P,與x軸交于點Q,將直線PQP點沿逆時針方向旋轉(zhuǎn)45°后,所得的直線交x軸于點R.求點R的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校要從小王和小李兩名同學(xué)中挑選一人參加全市知識競賽,在最近的五次選拔測試中,他倆的成績分別如下表:

次數(shù)

1

2

3

4

5

小王

60

75

100

90

75

小李

70

90

100

80

80

根據(jù)上表解答下列問題:

(1)完成下表:

姓名

平均成績(分)

中位數(shù)(分)

眾數(shù)(分)

方差

小王

80

75

75

190

小李

(2)在這五次測試中,成績比較穩(wěn)定的同學(xué)是誰?若將80分以上(含80分)的成績視為優(yōu)秀,則小王、小李在這五次測試中的優(yōu)秀率各是多少?

(3)歷屆比賽表明,成績達(dá)到80分以上(含80分)就很可能獲獎,成績達(dá)到90分以上(含90分)就很可能獲得一等獎,那么你認(rèn)為選誰參加比賽比較合適?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖AB分別為數(shù)軸上的兩點,A點對應(yīng)的數(shù)為-10 B點對應(yīng)的數(shù)為90.

1)請寫出AB的中點M對應(yīng)的數(shù).

2)現(xiàn)在有一只電子螞蟻PB點出發(fā),以3個單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發(fā),以2個單位/秒的速度向右運動,設(shè)兩只電子螞蟻在數(shù)軸上的C點相遇,

①你知道經(jīng)過幾秒兩只電子螞蟻相遇?

②點C對應(yīng)的數(shù)是多少?

③經(jīng)過多長時間兩只電子螞蟻在數(shù)軸上相距10個單位長度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)y=的圖象與雙曲線y=(k≠0,x>0)相交于點A(3,m)和點B.

(1)求雙曲線的解析式及點B的坐標(biāo);

(2)若點Py軸上,連接PA,PB,求當(dāng)PA+PB的值最小時點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案