【題目】閱讀下面材料:小明研究了這樣一個(gè)問題:求使得等式成立的x的個(gè)數(shù).小明發(fā)現(xiàn),先將該等式轉(zhuǎn)化為,再通過研究函數(shù)的圖象與函數(shù)的圖象(如圖)的交點(diǎn),使問題得到解決.
(1)當(dāng)k=1時(shí),使得原等式成立的x的個(gè)數(shù)為_______;
(2)當(dāng)0<k<1時(shí),使得原等式成立的x的個(gè)數(shù)為_______;
(3)當(dāng)k>1時(shí),使得原等式成立的x的個(gè)數(shù)為_______.
參考小明思考問題的方法,解決問題:關(guān)于x的不等式只有一個(gè)整數(shù)解,求的取值范圍.
【答案】(1)1;(2)2;(3)1;.
【解析】
試題(1)由圖像可知,當(dāng)k=1時(shí),使得原等式成立的x的個(gè)數(shù)為1;
(2)觀察圖像可知,當(dāng)0<k<1時(shí),使得原等式成立的x的個(gè)數(shù)為2;
(3)同樣觀察圖像可知,當(dāng)k>1時(shí),使得原等式成立的x的個(gè)數(shù)為1.
將不等式轉(zhuǎn)化為,研究函數(shù)與函數(shù)的圖象的交點(diǎn)即可.
試題解析:解:(1)當(dāng)k=1時(shí),使得原等式成立的x的個(gè)數(shù)為1;
(2)當(dāng)0<k<1時(shí),使得原等式成立的x的個(gè)數(shù)為2;
(3)當(dāng)k>1時(shí),使得原等式成立的x的個(gè)數(shù)為1.
解決問題:將不等式轉(zhuǎn)化為,研究函數(shù)與函數(shù)的圖象的交點(diǎn).
∵函數(shù)的圖象經(jīng)過點(diǎn)A(1,4),B(2,2),
函數(shù)的圖象經(jīng)過點(diǎn)C(1,1),D(2,4),
若函數(shù)經(jīng)過點(diǎn)A(1,4),則a=3,
結(jié)合圖象可知,當(dāng)時(shí),關(guān)于x的不等式只有一個(gè)整數(shù)解.
也就是當(dāng)時(shí),關(guān)于x的不等式只有一個(gè)整數(shù)解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知MON=30°,OA=4,在OM、ON上分別找一點(diǎn)B、C,使AB+BC最小,則最小值為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AD是⊙O的弦,點(diǎn)F是DA延長線上的一點(diǎn),過⊙O上一點(diǎn)C作⊙O的切線交DF于點(diǎn)E,CE⊥DF.
(1)求證:AC平分∠FAB;
(2)若AE=1,CE=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品的進(jìn)價(jià)為每件30元,售價(jià)為每件40元,每周可賣出180件;如果每件商品的售價(jià)每上漲1元,則每周就會(huì)少賣出5件,但每件售價(jià)不能高于50元,設(shè)每件商品的售價(jià)上漲x元(x為整數(shù)),每周的銷售利潤為y元.
(1)求y與x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(2)每件商品的售價(jià)為多少元時(shí),每周可獲得最大利潤?最大利潤是多少?
(3)每件商品的售價(jià)定為多少元時(shí),每周的利潤恰好是2145元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小天在學(xué)習(xí)銳角三角函數(shù)中遇到這樣一個(gè)問題:在中,,,則______
小天根據(jù)學(xué)習(xí)幾何的經(jīng)驗(yàn),先畫出了幾何圖形如圖,他發(fā)現(xiàn)不是特殊角,但它是特殊角的一半,若構(gòu)造有特殊角的直角三角形,則可能解決這個(gè)問題于是小天嘗試著在CB邊上截取,連接如圖,通過構(gòu)造有特殊角的直角三角形,經(jīng)過推理和計(jì)算使問題得到解決.
請回答:______.
參考小天思考問題的方法,解決問題:
如圖3,在等腰中,,,請借助,構(gòu)造出的角,并求出該角的正切值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在開展 “校園獻(xiàn)愛心”活動(dòng)中,準(zhǔn)備向南部山區(qū)學(xué)校捐贈(zèng)男、女兩種款式的書包.已知男款書包的單價(jià)50元/個(gè),女款書包的單價(jià)70元/個(gè).
(1)原計(jì)劃募捐3400元,購買兩種款式的書包共60個(gè),那么這兩種款式的書包各買多少個(gè)?
(2)在捐款活動(dòng)中,由于學(xué)生捐款的積極性高漲,實(shí)際共捐款4800元,如果至少購買兩種款式的書包共80個(gè),那么女款書包最多能買多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,且AB=4,點(diǎn)C在半圓上,OC⊥AB,垂足為點(diǎn)O,P為半圓上任意一點(diǎn),過P點(diǎn)作PE⊥OC于點(diǎn)E,設(shè)△OPE的內(nèi)心為M,連接OM、PM.當(dāng)點(diǎn)P在半圓上從點(diǎn)B運(yùn)動(dòng)到點(diǎn)A時(shí),內(nèi)心M所經(jīng)過的路徑長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,扇形OAB中,∠AOB=100°,OA=12,C是OB的中點(diǎn),CD⊥OB交于點(diǎn)D,以O(shè)C為半徑的交OA于點(diǎn)E,則圖中陰影部分的面積是( 。
A. 12π+18 B. 12π+36 C. 6π+18 D. 6π+36
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】知識改變世界,科技改變生活.導(dǎo)航裝備的不斷更新極大方便了人們的出行.如圖,某校組織學(xué)生乘車到黑龍灘(用C表示)開展社會(huì)實(shí)踐活動(dòng),車到達(dá)A地后,發(fā)現(xiàn)C地恰好在A地的正北方向,且距離A地13千米,導(dǎo)航顯示車輛應(yīng)沿北偏東60°方向行駛至B地,再沿北偏西37°方向行駛一段距離才能到達(dá)C地,求B、C兩地的距離.(參考數(shù)據(jù):sin53°≈,cos53°≈,tan53°≈)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com