【題目】如圖,點(diǎn)A、B都在數(shù)軸上,O為原點(diǎn).

(1)點(diǎn)B表示的數(shù)是_________________;

(2)若點(diǎn)B以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右運(yùn)動(dòng),則2秒后點(diǎn)B表示的數(shù)是________;

(3)若點(diǎn)A、B分別以每秒1個(gè)單位長(zhǎng)度、3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右運(yùn)動(dòng),而點(diǎn)O不動(dòng),t秒后,A、B、O三個(gè)點(diǎn)中有一個(gè)點(diǎn)是另外兩個(gè)點(diǎn)為端點(diǎn)的線段的中點(diǎn),求t的值.

【答案】(1)-4;(2)0;(3)符合條件的t的值是0.5,2或8.

【解析】試題(1)根據(jù)數(shù)軸寫出即可;(2)先根據(jù)路程=速度×時(shí)間求出B點(diǎn)2秒運(yùn)動(dòng)的路程,再加上-4即可求解;(3)分三種情況:OBA的中點(diǎn);BOA的中點(diǎn);當(dāng)點(diǎn)A是線段OB的中點(diǎn)時(shí);進(jìn)行討論即可求解.

(1)點(diǎn)B表示的數(shù)是___-4__;

(2)2秒后點(diǎn)B表示的數(shù)是 0 ;

(3)① 當(dāng)點(diǎn)O是線段AB的中點(diǎn)時(shí),OB=OA

4-3t=2+t

t=0.5

當(dāng)點(diǎn)B是線段OA的中點(diǎn)時(shí), OA = 2 OB

2+t=2(3t-4)

t=2

當(dāng)點(diǎn)A是線段OB的中點(diǎn)時(shí), OB = 2 OA

3t--4=2(2+t)

t=8

綜上所述,符合條件的t的值是0.5,2或8.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對(duì)于與坐標(biāo)軸不平行的直線l和點(diǎn)P,給出如下定義:過(guò)點(diǎn)Px軸,y軸的垂線,分別交直線l于點(diǎn)M,N,若PM+PN≤4,則稱P為直線l的近距點(diǎn),特別地,直線上l所有的點(diǎn)都是直線l的近距點(diǎn).已知點(diǎn)A(-,0),B(0,2),C(-2,2).

(1)當(dāng)直線l的表達(dá)式為y=x時(shí),

①在點(diǎn)A,B,C中,直線l的近距點(diǎn)是

②若以OA為邊的矩形OAEF上所有的點(diǎn)都是直線l的近距點(diǎn),求點(diǎn)E的縱坐標(biāo)n的取值范圍;

(2)當(dāng)直線l的表達(dá)式為y=kx時(shí),若點(diǎn)C是直線l的近距點(diǎn),直接寫出k的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

(1)-16-(-1+)÷3×[2-(-4)2]

(2)解方程:-=-1

(3)先化簡(jiǎn),再求值:2(x2-2xy)+[2y2-3(x2-2xy+y2)+x2],其中x=1,y=-

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一只小球落在數(shù)軸上的某點(diǎn),第一次從向左跳1個(gè)單位到,第二次從向右跳2個(gè)單位到,第三次從向左跳3個(gè)單位到,第四次從向右跳4個(gè)單位到,若小球從原點(diǎn)出發(fā),按以上規(guī)律跳了6次時(shí),它落在數(shù)軸上的點(diǎn)所表示的數(shù)是__________;若小球按以上規(guī)律跳了2n次時(shí),它落在數(shù)軸上的點(diǎn)所表示的數(shù)恰好是,則這只小球的初始位置點(diǎn)所表示的數(shù)是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y= (x>0)的圖象上有一點(diǎn)A(m,4),過(guò)點(diǎn)A作AB⊥x軸于點(diǎn)B,將點(diǎn)B向右平移2個(gè)單位長(zhǎng)度得到點(diǎn)C,過(guò)點(diǎn)C作y軸的平行線交反比例函數(shù)的圖象于點(diǎn)D,CD=

(1)點(diǎn)D的橫坐標(biāo)為(用含m的式子表示);
(2)求反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小玲和小明值日打掃教室衛(wèi)生,小玲單獨(dú)打掃雪20min完成,小明單獨(dú)打掃雪16min完成.因小明要將數(shù)學(xué)作業(yè)本交到老師辦公室推遲一會(huì)兒,故先由小玲單獨(dú)打掃4min,余下的再由兩人一起完成,則兩人一起打掃完教師衛(wèi)生需要多長(zhǎng)時(shí)間?設(shè)兩人一起打掃完教室衛(wèi)生需要x min,則根據(jù)題意可列方程( 。

A. (x+4)+x=1 B. x+(x+4)=1

C. (x﹣4)+x=1 D. x+(x﹣4)=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩支“徒步隊(duì)”到野外沿相同路線徒步,徒步的路程為24千米.甲隊(duì)步行速度為4千米/時(shí),乙隊(duì)步行速度為6千米/時(shí).甲隊(duì)出發(fā)1小時(shí)后,乙隊(duì)才出發(fā),同時(shí)乙隊(duì)派一名聯(lián)絡(luò)員跑步在兩隊(duì)之間來(lái)回進(jìn)行一次聯(lián)絡(luò)(不停頓),他跑步的速度為10千米/時(shí).

(1)乙隊(duì)追上甲隊(duì)需要多長(zhǎng)時(shí)間?

(2)聯(lián)絡(luò)員從出發(fā)到與甲隊(duì)聯(lián)系上后返回乙隊(duì)時(shí),他跑步的總路程是多少?

(3)從甲隊(duì)出發(fā)開始到乙隊(duì)完成徒步路程時(shí)止,何時(shí)兩隊(duì)間間隔的路程為1千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了迎接卓園藝術(shù)節(jié)的召開,現(xiàn)要從七、八年級(jí)學(xué)生中抽調(diào)人參加“校園集體舞”、“廣播體操”、“唱紅歌”等活動(dòng),其中參加“校園集體舞”人數(shù)是抽調(diào)人數(shù)的 還多3人,參加“廣播體操活動(dòng)人數(shù)是抽調(diào)人數(shù)的 少2人,其余的參加“唱紅歌”活動(dòng),若抽調(diào)的每個(gè)學(xué)生只參加了一項(xiàng)活動(dòng).

(1)求參加“唱紅歌”活動(dòng)的人數(shù).(用含的式子表示)

(2)求參加“廣播體操”比參加“校園集體舞”多的人數(shù).(用含的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】□ABCD中,AC=6,BD=10,動(dòng)點(diǎn)P從B出發(fā)以每秒1個(gè)單位的速度沿射線BD勻速運(yùn)動(dòng),動(dòng)點(diǎn)Q從D出發(fā)以相同速度沿射線DB勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)當(dāng)t =2時(shí),證明以A、P、C、Q為頂點(diǎn)的四邊形是平行四邊形.

(2)當(dāng)以A、P、C、Q為頂點(diǎn)的四邊形為矩形時(shí),直接寫出t的值.

(3)設(shè)PQ=y,直接寫出y與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案