精英家教網 > 初中數學 > 題目詳情

【題目】如圖,A120),B0,9)分別是平面直解坐標系xOy坐標軸上的點,經過點O且與AB相切的動圓與x軸、y軸分別相交與點PQ,則線段PQ長度的最小值是( 。

A.B.10C.7.2D.

【答案】C

【解析】

QP的中點為F,圓FAB的切點為D,連接FD,連接OF,OD,則有FDAB;由勾股定理的逆定理知,△ABO是直角三角形,FO+FD=PQ,由三角形的三邊關系知,FO+FD≥OD;只有當點F、OD共線時,FO+FD=PQ有最小值,最小值為OD的長,即當點F在直角三角形ABO的斜邊AB的高OD上時,PQ=OD有最小值,由直角三角形的面積公式知,此時OD7.2.

解:如圖,設QP的中點為F,圓FAB的切點為D,連接FDOF、OD,則FDAB

A12,0)、B0,9),

AO12,BO9,

AB15,

∴∠AOB90°,

PQ是圓F的直徑,

FO+FDPQ,

FO+FD≥OD

當點F、OD共線時,PQ有最小值,此時PQOD,

OD7.2

故選:C

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD的外側,作等邊三角形ADE,連接BE,CE

1)求證:BE=CE

2)求BEC的度數

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知四邊形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延長線與AD的延長線交于點E.

(1)若∠A=60°,求BC的長;

(2)若sinA=,求AD的長.

(注意:本題中的計算過程和結果均保留根號)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,以邊為直徑的經過點,上一點,連結于點,且.

1)試判斷的位置關系,并說明理由;

2)若點是弧的中點,已知,求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】隨著粵港澳大灣區(qū)建設的加速推進,廣東省正加速布局以5G等為代表的戰(zhàn)略性新興產業(yè),據統(tǒng)計,目前廣東5G基站的數量約1.5萬座,計劃到2020年底,全省5G基站數是目前的4倍,到2022年底,全省5G基站數量將達到17.34萬座。

1)計劃到2020年底,全省5G基站的數量是多少萬座?;

2)按照計劃,求2020年底到2022年底,全省5G基站數量的年平均增長率。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,有一塊直角三角板,其中,,A、Bx軸上,點A的坐標為,圓M的半徑為,圓心M的坐標為,圓M以每秒1個單位長度的速度沿x軸向右做平移運動,運動時間為t秒;

求點C的坐標;

當點M的內部且與直線BC相切時,求t的值;

如圖2,點E、F分別是BC、AC的中點,連接EMFM,在運動過程中,是否存在某一時刻,使?若存在,直接寫出t的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,一次函數yax+1a≠0)與反比例函數yk≠0)的圖象交于A、D兩點,ABx軸于點B,tanAOB,OB2

1)求反比例函數和一次函數的解析式;

2)求AOD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數y=ax2+bx的圖象如圖所示,若關于x的一元二次方程ax2+bx+k-1=0沒有實數根,則k的取值范圍為______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線y1x2+bx+c與直線y2=﹣2x+m相交于A(﹣2,n)、B2,﹣3)兩點.

1)求這條拋物線的解析式;

2)若點D為拋物線的頂點,求三角形ABD的面積.

查看答案和解析>>

同步練習冊答案