【題目】已知等腰三角形的一邊長為2,周長為8,那么它的腰長為 ( )
A. 2 B. 3 C. 2或3 D. 不能確定
【答案】B
【解析】
等腰三角形的定義及性質(zhì):
(1)等腰三角形兩腰相等;
(2)等邊對等角;
(3)三線合一:頂角平分線,底邊上的中線,底邊上的高互相重合.
根據(jù)等腰三角形性質(zhì)(1)和已知條件,進(jìn)行分類討論,即可得到答案,要注意的是一定要符合構(gòu)成三角形的三邊關(guān)系.
解:已知三角形一邊長為2,
(1)當(dāng)這一邊是等腰三角形的腰時,它的腰長就為2,則底邊是4
根據(jù)三角形三邊關(guān)系,這種情況不符合條件;
(2)當(dāng)這一邊是等腰三角形的底邊時
∵ 周長為8,底邊為2
∴ 腰長為:=3 (等腰三角形兩腰相等)
根據(jù)三角形三邊關(guān)系,這種情況符合條件;
綜上所述,這個等腰三角形的腰長為3.
故答案選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“一方有難,八方支援”,雅安蘆山420地震后,某單位為一中學(xué)捐贈了一批新桌椅,學(xué)校組織初一年級200名學(xué)生搬桌椅.規(guī)定一人一次搬兩把椅子,兩人一次搬一張桌子,每人限搬一次,最多可搬桌椅(一桌一椅為一套)的套數(shù)為( )
A.60
B.70
C.80
D.90
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的極坐標(biāo)方程為ρsin(θ+ )= ,圓C的參數(shù)方程為: (其中θ為參數(shù)).
(1)判斷直線l與圓C的位置關(guān)系;
(2)若橢圓的參數(shù)方程為 (φ為參數(shù)),過圓C的圓心且與直線l垂直的直線l′與橢圓相交于A,B兩點,求|AB|.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) ,g(x)為定義在R上的奇函數(shù),且當(dāng)x<0時,g(x)=x2﹣2x﹣5,若f(g(a))≤2,則實數(shù)a的取值范圍是( )
A.
B. ??
C.(﹣∞,﹣1]∪(0,3]
D.[﹣1,3]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】襄陽農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫度與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差x(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 26 | 32 | 26 | 16 |
襄陽農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是不相鄰的2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日這兩組數(shù)據(jù),情根據(jù)12月2日至12月4日的數(shù)據(jù),求y關(guān)于x的線性回歸方程 = x+ ;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過1顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠? 注: = = , = ﹣ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三角形紙片ABC中,∠ACB=90°,BC=3,AB=5,在AC上取一E,以BE為折痕,使AB的一部分與BC重合,A與BC延長線上的點D重合,則CE的長度為( )
A. 1 B. C. 2 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線x2=2py(p>0)的焦點為F,直線x=4與x軸的交點為P,與拋物線的交點為Q,且 .
(1)求拋物線的方程;
(2)如圖所示,過F的直線l與拋物線相交于A,D兩點,與圓x2+(y﹣1)2=1相交于B,C兩點(A,B兩點相鄰),過A,D兩點分別作我校的切線,兩條切線相交于點M,求△ABM與△CDM的面積之積的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,圓ρ=4cosθ與圓ρ=2sinθ交于O,A兩點. (Ⅰ)求直線OA的斜率;
(Ⅱ)過O點作OA的垂線分別交兩圓于點B,C,求|BC|.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線 交x軸的正半軸于點A , 點B( ,a)在拋物線上,點C是拋物線對稱軸上的一點,連接AB、BC , 以AB、BC為鄰邊作□ABCD , 記點C縱坐標(biāo)為n ,
(1)求a的值及點A的坐標(biāo);
(2)當(dāng)點D恰好落在拋物線上時,求n的值;
(3) 記CD與拋物線的交點為E,連接AE,BE,當(dāng)三角形AEB的面積為7時,n=
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com