【題目】(1)問(wèn)題發(fā)現(xiàn)
如圖1,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=50°,連接BD,CE交于點(diǎn)F.填空:
①的值為 ;②∠BFC的度數(shù)為 .
(2)類(lèi)比探究
如圖2,在矩形ABCD和△DEF中,AD=AB,∠EDF=90°,∠DEF=60°,連接AF交CE的延長(zhǎng)線(xiàn)于點(diǎn)P.求的值及∠APC的度數(shù),并說(shuō)明理由;
(3)拓展延伸
在(2)的條件下,將△DEF繞點(diǎn)D在平面內(nèi)旋裝,AF,CE所在直線(xiàn)交于點(diǎn)P,若DF=,AB=,求出當(dāng)點(diǎn)P與點(diǎn)E重合時(shí)AF的長(zhǎng).
【答案】(1)1,50°;(2),理由見(jiàn)解析;(3)當(dāng)點(diǎn)P與點(diǎn)E重合時(shí),AF的長(zhǎng)為3或6,理由見(jiàn)解析
【解析】
(1)問(wèn)題發(fā)現(xiàn):由“SAS”可證△DAB≌△EAC,可得BD=CE,∠ACE=∠ABD,即可求解;
(2)類(lèi)比探究:通過(guò)證明△ADF∽△CDE,可得,∠FAD=DCE,即可求解;
(3)拓展延伸:過(guò)點(diǎn)C作CM⊥DE,由勾股定理可求CE的長(zhǎng),即可求AF的長(zhǎng).
(1)問(wèn)題發(fā)現(xiàn):
∵∠BAC=∠DAE=50°,
∴∠DAB=∠EAC,且AB=AC,AD=AE
∴△DAB≌△EAC(SAS)
∴BD=CE,∠ACE=∠ABD
∴
∵∠BAC+∠ABC+∠ACB=180°,且∠BFC+∠FBC+∠FCB=∠BFC+∠ABC+∠ABF+∠FCB=∠BFC+∠ABC+∠ACB=180°
∴∠BFC=∠BAC=50°
故答案為1,50°
(2)類(lèi)比探究:
,∠APC=90°
理由如下:∵∠DEF=60°,∠FDE=90°
∴DF=DE,
∵四邊形ABCD是矩形
∴CD=AB,∠ADC=90°
∴AD=DC,∠ADC=∠EDF=90°
∴∠EDC=∠ADF,且
∴△ADF∽△CDE
∴,∠FAD=DCE
∴點(diǎn)A,點(diǎn)P,點(diǎn)D,點(diǎn)C四點(diǎn)共圓
∴∠APC=∠ADC=90°
(3)拓展延伸:
如圖,過(guò)點(diǎn)C作CM⊥DE,交ED延長(zhǎng)線(xiàn)于點(diǎn)M,
∵DF=,∠DEF=60°,∠AEC=90°
∴DE=1,∠CEM=30°
∵∠CEM=30°,CM⊥ED
∴
∵CD2=CM2+DM2,
∴7=+(EM﹣1)2,
∴CE=2
∵,
∴AF=6
如圖,過(guò)點(diǎn)C作CM⊥DE,交DE延長(zhǎng)線(xiàn)于點(diǎn)M,
∵DF=,∠DEF=60°,∠AEC=90°
∴DE=1,∠CEM=30°
∵∠CEM=30°,CM⊥ED
∴
∵CD2=CM2+DM2,
∴7=+(EM+1)2,
∴CE=
∵,
∴AF=3
綜上所述:當(dāng)點(diǎn)P與點(diǎn)E重合時(shí),AF的長(zhǎng)為3或6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)與正比例函數(shù)的圖像分別交于點(diǎn)A、B,若∠AOB=45°,則△AOB的面積是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,大樓底右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測(cè)得障礙物邊緣點(diǎn)C的俯角為30°,測(cè)得大樓頂端A的仰角為45°(點(diǎn)B,C,E在同一水平直線(xiàn)上).已知AB=80m,DE=20m,求障礙物B,C兩點(diǎn)間的距離.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中與成反比例與成正比例,函數(shù)的自變量的取值范圍是,且當(dāng)或時(shí),的值均為。
請(qǐng)對(duì)該函數(shù)及其圖象進(jìn)行如下探究:
(1)解析式探究:根據(jù)給定的條件,可以確定出該函數(shù)的解析式為: .
(2)函數(shù)圖象探宄:①根據(jù)解析式,選取適當(dāng)?shù)淖宰兞?/span>,并完成下表:
... | ||||||||||
... |
②根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫(huà)出函數(shù)圖象.
(3)結(jié)合畫(huà)出的函數(shù)圖象,解決問(wèn)題:
①當(dāng),,時(shí),函數(shù)值分別為,則的大小關(guān)系為: (用“”或“”表示)
②若直線(xiàn)與該函數(shù)圖象有兩個(gè)交點(diǎn),則的取值范圍是 ,此時(shí),的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市在端午節(jié)期間開(kāi)展優(yōu)惠活動(dòng),凡購(gòu)物者可以通過(guò)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)的方式享受折扣優(yōu)惠,本次活動(dòng)共有兩種方式,方式一:轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)甲,指針指向A區(qū)域時(shí),所購(gòu)買(mǎi)物品享受9折優(yōu)惠、指針指向其它區(qū)域無(wú)優(yōu)惠;方式二:同時(shí)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)甲和轉(zhuǎn)盤(pán)乙,若兩個(gè)轉(zhuǎn)盤(pán)的指針指向每個(gè)區(qū)域的字母相同,所購(gòu)買(mǎi)物品享受8折優(yōu)惠,其它情況無(wú)優(yōu)惠.在每個(gè)轉(zhuǎn)盤(pán)中,指針指向每個(gè)區(qū)城的可能性相同(若指針指向分界線(xiàn),則重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán))
(1)若顧客選擇方式一,則享受9折優(yōu)惠的概率為多少;
(2)若顧客選擇方式二,請(qǐng)用樹(shù)狀圖或列表法列出所有可能,并求顧客享受8折優(yōu)惠的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校開(kāi)展“我最喜愛(ài)的一項(xiàng)體育活動(dòng)”調(diào)查,要求每名學(xué)生必選且只能選一項(xiàng),現(xiàn)隨機(jī)抽查了m名學(xué)生,并將其結(jié)果繪制成不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
結(jié)合以上信息解答下列問(wèn)題:
(1)m= .
(2)請(qǐng)補(bǔ)全上面的條形統(tǒng)計(jì)圖;
(3)在圖2中,乒乓球所對(duì)應(yīng)扇形的圓心角= ;
(4)已知該校共有2100名學(xué)生,請(qǐng)你估計(jì)該校約有多少名學(xué)生最喜愛(ài)足球活動(dòng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O的半徑是2,點(diǎn)A,B在⊙O上,且∠AOB=90°,動(dòng)點(diǎn)C在⊙O上運(yùn)動(dòng)(不與A,B重合),點(diǎn)D為線(xiàn)段BC的中點(diǎn),連接AD,則線(xiàn)段AD的長(zhǎng)度最大值是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對(duì)稱(chēng)軸是直線(xiàn)x=1.
①b2>4ac; ②4a+2b+c<0;③不等式ax2+bx+c>0的解集是x≥3.5;④若(﹣2,y1),(5,y2)是拋物線(xiàn)上的兩點(diǎn),則y1<y2.上述4個(gè)判斷中,正確的是( )
A.①②B.①②④C.①③④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在每個(gè)小正方形邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A,B,C均在格點(diǎn)上.
(Ⅰ)AC的長(zhǎng)度等于_____;
(Ⅱ)在圖中有一點(diǎn)P,若連接AP,PB,PC,滿(mǎn)足AP平分∠A,且PC=PB,請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度的直尺,畫(huà)出點(diǎn)P,并簡(jiǎn)要說(shuō)明點(diǎn)P的位置是如何找到的(不要求證明)_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com