【題目】某校開展“我最喜愛的一項體育活動”調(diào)查,要求每名學生必選且只能選一項,現(xiàn)隨機抽查了m名學生,并將其結(jié)果繪制成不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.
結(jié)合以上信息解答下列問題:
(1)m= .
(2)請補全上面的條形統(tǒng)計圖;
(3)在圖2中,乒乓球所對應扇形的圓心角= ;
(4)已知該校共有2100名學生,請你估計該校約有多少名學生最喜愛足球活動.
【答案】(1)150;(2)詳見解析;(3)36°;(4)420(人)
【解析】
(1)根據(jù)條形圖、扇形圖得到數(shù)據(jù),計算即可;
(2)求出喜歡足球的人數(shù),補全上面的條形統(tǒng)計圖;
(3)根據(jù)乒乓球?qū)谋壤嬎悖?/span>
(4)根據(jù)校最喜愛足球活動的人數(shù)所占的百分比計算.
解:(1)由條形圖可知,喜歡排球的人數(shù)是21人,
由扇形統(tǒng)計圖可知,喜歡排球的人數(shù)所占的百分比為14%,
∴m=21÷14%=150(人),
故答案為150;
(2)喜歡足球的人數(shù):150﹣21﹣39﹣45﹣15=30(人)
補全上面的條形統(tǒng)計圖如圖所示:
(3)乒乓球所對應扇形的圓心角=360°×=36°,
故答案為36°;
(4)該校最喜愛足球活動的人數(shù):2100×20%=420(人).
科目:初中數(shù)學 來源: 題型:
【題目】某景區(qū)商店銷售一種紀念品,每件的進貨價為40元.經(jīng)市場調(diào)研,當該紀念品每件的銷售價為50元時,每天可銷售200件;當每件的銷售價每增加1元,每天的銷售數(shù)量將減少10件.
(1)當銷售該紀念品每天能獲得利潤2160元時,每件的銷售價應為多少?
(2)當每件的銷售價為多少時,銷售該紀念品每天獲得的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在半徑為的中,點是劣弧的中點,點是優(yōu)弧上一點,,下列四個結(jié)論:①;②;③;④四邊形是菱形.其中正確結(jié)論的序號是( )
A.①③B.②④C.②③④D.①③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在Rt△ABC中,AB=AC=3,在△ABC內(nèi)作第1個內(nèi)接正方形DEFG;然后取GF的中點P,連接PD、PE,在△PDE內(nèi)作第2個內(nèi)接正方形HIKJ;再取線段KJ的中點Q,在△QHI內(nèi)作第3個內(nèi)接正方形…,依次進行下去,則第2019個內(nèi)接正方形的邊長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=50°,連接BD,CE交于點F.填空:
①的值為 ;②∠BFC的度數(shù)為 .
(2)類比探究
如圖2,在矩形ABCD和△DEF中,AD=AB,∠EDF=90°,∠DEF=60°,連接AF交CE的延長線于點P.求的值及∠APC的度數(shù),并說明理由;
(3)拓展延伸
在(2)的條件下,將△DEF繞點D在平面內(nèi)旋裝,AF,CE所在直線交于點P,若DF=,AB=,求出當點P與點E重合時AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知矩形ABCD的四個頂點都在雙曲線y=(k>0)上,BC=2AB,且矩形ABCD的面積是32,則k的值是( )
A.6B.8C.10D.12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,在⊙O中,AB是直徑,弦EF∥AB,在直徑AB下方的半圓上有一個定點H(點H不與點A,B重合),請僅用無刻度的直尺畫出劣弧的中點P,并在直線AB上畫出點G,使直線AB平分∠HGP.(保留作圖痕跡,不寫作法)
(2)尺規(guī)作圖:如圖2,已知線段a、c,請你用兩種不同的方法作Rt△ABC,使其斜邊AB=c,一條直角邊BC=a.(保留作圖痕跡,不寫作法)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小婷在放學路上,看到隧道上方有一塊宣傳“中國﹣南亞博覽會”的豎直標語牌CD.她在A點測得標語牌頂端D處的仰角為42°,測得隧道底端B處的俯角為30°(B,C,D在同一條直線上),AB=10m,隧道高6.5m(即BC=65m),求標語牌CD的長(結(jié)果保留小數(shù)點后一位).(參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點是坐標原點,四邊形是菱形,點的坐標為,點在軸的正半軸上,直線交軸于點,邊交軸于點,連接.
(Ⅰ)求直線的解析式;
(Ⅱ)動點從點出發(fā),沿折線方向以2個單位/秒的速度向終點勻速運動,設的面積為,點的運動時間為秒.
①當時,求與之間的函數(shù)關系式;
②在點運動過程中,當時,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com