【題目】某保健品廠每天生產(chǎn)A,B兩種品牌的保健品共600瓶,AB兩種產(chǎn)品每瓶的成本和售價(jià)如下表,設(shè)每天生產(chǎn)A產(chǎn)品x瓶,生產(chǎn)這兩種產(chǎn)品每天共獲利y元.

A

 B

成本(元)/

50

 35

售價(jià)(元)/

70

   50

1)請(qǐng)求出y關(guān)于x的函數(shù)關(guān)系;

2)該廠每天生產(chǎn)的AB兩種產(chǎn)品被某經(jīng)銷商全部訂購,廠家對(duì)B產(chǎn)品不變,對(duì)A產(chǎn)品進(jìn)行讓利,每瓶利潤(rùn)降低元,廠家如何生產(chǎn)可使每天獲利最大?最大利潤(rùn)是多少?

【答案】1y關(guān)于x的函數(shù)關(guān)系為:y5x+9000;(2)每天生產(chǎn)A產(chǎn)品250件,B產(chǎn)品350件獲利最大,最大利潤(rùn)為9625元.

【解析】

1)根據(jù)題意,即可得y關(guān)于x的函數(shù)關(guān)系式為:y=(7050x+5035)(600x),然后化簡(jiǎn)即可求得答案;

2)首先表示出獲利與x之間的關(guān)系進(jìn)而得出函數(shù)最值.

1)由題意得:

y=(7050x+5035)(600x

5x+9000

y關(guān)于x的函數(shù)關(guān)系為:y5x+9000

2)由題意得:

y=(7050x+5035)(600x

=﹣x2502+9625

∵﹣0

∴當(dāng)x250時(shí),y有最大值9625

∴每天生產(chǎn)A產(chǎn)品250件,B產(chǎn)品350件獲利最大,最大利潤(rùn)為9625元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,∠B=∠C,FBC的中點(diǎn),D,E分別為邊AB,AC上的點(diǎn),且∠ADF=∠AEF.

(1)求證:△BDF△CEF.

(2)當(dāng)∠A= 100°,BD=BF時(shí),求∠DFE的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個(gè)轉(zhuǎn)盤中指針落在每個(gè)數(shù)字上的機(jī)會(huì)相等,現(xiàn)同時(shí)轉(zhuǎn)動(dòng)、兩個(gè)轉(zhuǎn)盤,停止后,指針各指向一個(gè)數(shù)字.小聰和小明利用這兩個(gè)轉(zhuǎn)盤做游戲:若兩數(shù)之和為負(fù)數(shù),則小聰勝;否則,小明勝.你認(rèn)為這個(gè)游戲公平嗎?如果不公平,對(duì)誰更有利?請(qǐng)你利用樹狀圖或列表法說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過A(-1,0)、B(4,0)、C(0,2)三點(diǎn).

(1)求該二次函數(shù)的解析式;

(2)點(diǎn)D是該二次函數(shù)圖象上的一點(diǎn),且滿足∠DBA=∠CAO(O是坐標(biāo)原點(diǎn)),求點(diǎn)D的坐標(biāo);

(3)點(diǎn)P是該二次函數(shù)圖象上位于一象限上的一動(dòng)點(diǎn),連接PA分別交BC,y軸與點(diǎn)E、F,若△PEB、△CEF的面積分別為S1、S2,求S1-S2的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將二次函數(shù)yx25x6x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個(gè)新圖象,若直線y2x+b與這個(gè)新圖象有3個(gè)公共點(diǎn),則b的值為( 。

A. 或﹣12B. 2C. 122D. 或﹣12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ABC90°,∠A30°,AC的垂直平分線交AC邊于點(diǎn)D,交AB邊于點(diǎn)O,以點(diǎn)O為圓心,OB的長(zhǎng)為半徑作圓,與AB邊交于點(diǎn)E

1)求證:AC是⊙O的切線;

2)若點(diǎn)P為⊙O上的動(dòng)點(diǎn)(含點(diǎn)E,B),連接BD、BP、DP

①當(dāng)點(diǎn)P只在BE左側(cè)半圓上時(shí),如果BCDP,求∠BDP的度數(shù);

②若QBP的中點(diǎn),當(dāng)BE4時(shí),直接寫出CQ長(zhǎng)度的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E是邊BC上的一動(dòng)點(diǎn)(不與點(diǎn)BC重合),連接DE、點(diǎn)C關(guān)于直線DE的對(duì)稱點(diǎn)為C′,連接AC′并延長(zhǎng)交直線DE于點(diǎn)PFAC′的中點(diǎn),連接DF

1)求∠FDP的度數(shù);

2)連接BP,請(qǐng)用等式表示AP、BP、DP三條線段之間的數(shù)量關(guān)系,并證明;

3)連接AC,若正方形的邊長(zhǎng)為,請(qǐng)直接寫出△ACC′的面積最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,∠BAC90°,直角∠EPF的頂點(diǎn)PBC的中點(diǎn),兩邊PE,PF分別交AB,AC于點(diǎn)E,F,現(xiàn)給出以下四個(gè)結(jié)論:(1AECF;(2EPF是等腰直角三角形;(3S四邊形AEPFSABC;(4)當(dāng)∠EPFABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)始終有EFAP.(點(diǎn)E不與A、B重合),上述結(jié)論中是正確的結(jié)論的概率是( 。

A.1個(gè)B.3個(gè)C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為1的正方形組成的網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上,其中點(diǎn)A(5,4),B(1,3),將△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△A1OB1

(1)畫出△A1OB1;

(2)求在旋轉(zhuǎn)過程中線段AB、BO掃過的圖形的面積之和.

查看答案和解析>>

同步練習(xí)冊(cè)答案