【題目】為了美化環(huán)境,學(xué)校準(zhǔn)備在如圖所示的矩形ABCD空地上進(jìn)行綠化,規(guī)劃在中間的一塊四邊形MNPQ上種花,其余的四塊三角形上鋪設(shè)草坪,要求AMANCPCQ,已知BC30米,AB42米,設(shè)ANx米,種花的面積為y1平方米,草坪面積y2平方米.

1)分別求y1y2x之間的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);

2)當(dāng)AN的長為多少米時(shí),種花的面積為640平方米?

3)若種花每平方米需200元,鋪設(shè)草坪每平方米需100元,現(xiàn)設(shè)計(jì)要求種花的面積不大于640平方米,設(shè)學(xué)校所需費(fèi)用W(元),求Wx之間的函數(shù)關(guān)系式,并求出學(xué)校所需費(fèi)用的最大值.

【答案】1y1=-2x2+72x;;(2)當(dāng)AN的長為16米或20米時(shí)種花的面積為640平方米;(3W=-200x-182+190800190000.

【解析】

1)根據(jù)三角形面積公式可得y2的解析式,再用長方形面積減去y2,即可得y1的函數(shù)解析式;
2)根據(jù)題意把y1=640代入y1=-2x2+72x得關(guān)于x的方程,解方程即可得;
3)列出總費(fèi)用的函數(shù)解析式,將其配方成頂點(diǎn)式,根據(jù)花的面積不大于640平方米可得x的范圍,結(jié)合此范圍根據(jù)二次函數(shù)的性質(zhì)即可得函數(shù)的最大值,從而得解.

解:(1)根據(jù)題意,得y1=42×30-y2=-2x2+72x;

2)根據(jù)題意,把y1=640代入y1=-2x2+72x得:-2x2+72x=640,
解得:x1=16,x2=20
故當(dāng)AN的長為16米或20米時(shí)種花的面積為640平方米;

3)設(shè)總費(fèi)用為W元,
W=200-2x2+72x+1002x2-72x+1260=-200x-182+190800,
由(2)知當(dāng)0x≤1620≤x≤30時(shí),y1≤640,
W=-200x-182+190800中,當(dāng)x18時(shí),Wx的增大而增大,當(dāng)x18時(shí),Wx的增大而減小,
∴當(dāng)x=16時(shí),W取得最大值,最大值W=190000
當(dāng)x=20時(shí),W取得最大值,最大值W=190000,
∴學(xué)校所需費(fèi)用的最大值為190000元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的對稱軸為直線,與軸的一個(gè)交點(diǎn)在之間,其部分圖象如圖所示.則下列結(jié)論:;②;③;④為實(shí)數(shù));點(diǎn),是該拋物線上的點(diǎn),則,正確的個(gè)數(shù)有(

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明為了測量小河對岸大樹BC的高度,他在點(diǎn)A測得大樹頂端B的仰角為45°,沿斜坡走3米到達(dá)斜坡上點(diǎn)D,在此處測得樹頂端點(diǎn)B的仰角為31°,且斜坡AF的坡比為12

1)求小明從點(diǎn)A到點(diǎn)D的過程中,他上升的高度;

2)大樹BC的高度約為多少米?(參考數(shù)據(jù):sin31°≈0.52,cos31°≈0.86,tan31°≈0.60

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半徑為3O中,AB是直徑,AC是弦,且AC=4.過點(diǎn)O作直徑DEAC,垂足為點(diǎn)P,過點(diǎn)B的直線交AC的延長線和DE的延長線于點(diǎn)F、G

(1)求線段AP、CB的長;

(2)若OG=9,求證:FGO的切線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知A(2,0)、B(3,1)、C(1,3).

(1)畫出ABC沿x軸負(fù)方向平移2個(gè)單位后得到的△A1B1C1,并寫出B1的坐標(biāo)   ;

(2)以A1點(diǎn)為旋轉(zhuǎn)中心,將△A1B1C1逆時(shí)針方向旋轉(zhuǎn)90°得△A1B2C2,畫出△A1B2C2,并寫出C2的坐標(biāo)   ;

(3)直接寫出過B、B1、C2三點(diǎn)的圓的圓心坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,過點(diǎn)DDEAB于點(diǎn)E,點(diǎn)F在邊CD上,CF=AE,連接AF,BF.

(1)求證:四邊形BFDE是矩形;

(2)已知∠DAB=60°,AF是∠DAB的平分線,若AD=3,求DC的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《國家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》規(guī)定:體質(zhì)測試成績達(dá)到90.0分及以上的為優(yōu)秀;達(dá)到80.0分至89.9分的為良好;達(dá)到60.0分至79.9分的為及格;59.9分及以下為不及格,某校為了了解九年級學(xué)生體質(zhì)健康狀況,從該校九年級學(xué)生中隨機(jī)抽取了10%的學(xué)生進(jìn)行體質(zhì)測試,測試結(jié)果如下面的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖所示。

各等級學(xué)生平均分統(tǒng)計(jì)表

等級

優(yōu)秀

良好

及格

不及格

平均分

92.1

85.0

69.2

41.3

各等級學(xué)生人數(shù)分布扇形統(tǒng)計(jì)圖

1)扇形統(tǒng)計(jì)圖中不及格所占的百分比是  ;

2)計(jì)算所抽取的學(xué)生的測試成績的平均分;

3)若所抽取的學(xué)生中所有不及格等級學(xué)生的總分恰好等于某一個(gè)良好等級學(xué)生的分?jǐn)?shù),請估計(jì)該九年級學(xué)生中約有多少人達(dá)到優(yōu)秀等級。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),AD和過C點(diǎn)的直線互相垂直,垂足為D,且AC平分∠DAB.

(1)求證:DC為⊙O的切線;

(2)若∠DAB=60°,⊙O的半徑為3,求線段AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)用配方法解方程:

2)已知點(diǎn)(5,0)在拋物線y=-x2(k1)xk上,求出拋物線的對稱軸.

查看答案和解析>>

同步練習(xí)冊答案