【題目】如圖,點(diǎn)的邊,過(guò)點(diǎn)的平行線,如果,那么的度數(shù)為__________

【答案】1)①中線;②是;(2)見(jiàn)解析;(3.

【解析】

1)①根據(jù)中線及二分線的定義即可求解;

②先由ADBC邊上的中線可得SABD=SACD,再根據(jù)可得S四邊形ACFE=SBEF即可求解;

2)先證△CDG≌△EAG可得SCDG=SEAG,再根據(jù)FEB的中點(diǎn)即可求解;

3)分別證明△AEB≌△CDE,△AEB≌△EBH,△MHB≌△MAE,然后得出SMHB=SMAE再根據(jù)全等三角形的性質(zhì)及二分線定義即可求解.

1)①三角形的中線、高線、角平分線中,一定是三角形的二分線的是中線,

故答案為中線;

②∵ADBC邊上的中線,

SABD=SACD,

又∵,

S四邊形BEGD=S四邊形AGFC,

S四邊形BEGD+=S四邊形AGFC+,

=S四邊形AEFC,

所以EF是△ABC的一條二分線,故答案為是;

2)∵點(diǎn)GAD的中點(diǎn),

GD=AG,

ABDC,

∴∠D=GAE

在△CDG和△EAG中,

∴△CDG≌△EAGASA),

SCDG=SEAG,

∵點(diǎn)FEB的中點(diǎn),

SCFE=SCBF,

SAGE+S四邊形AGCF=SCBF,

SCDG+S四邊形AGCF=SCBF,S四邊形ADCF=SCBF

CF是四邊形ABCD的二分線;

3)如圖,延長(zhǎng)CB于點(diǎn)H,使得BH=AE,連接EHAB于點(diǎn)M,

,

AB=BC,

∴∠A=C,

∵∠BED=∠A,

∴∠AEB=∠CDE

在△AEB和△CDE中,

,

∴△AEB≌△CDEAAS),

AE=CD

BH=CD,

DH=CB,

CB=CE,

∴∠CBE=∠CEB,

∴∠HBE=∠AEB,

在△EBH和△BEA中,

,

∴△AEB≌△EBHSAS),

∴∠H=A,

在△MBH和△MEA中,

∴△MHB≌△MAEASA),

SMHB=SMAE,

SHMB+S四邊形MBFE=SAME+S四邊形MBFE,即SHEF=S四邊形ABFE

EF是四邊形ABDE的一條二分線,

S四邊形ABFE=SDEF,

SHEF=SDEF

DF=DH=CB=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,銳角△ABC的兩條高BE、CD相交于點(diǎn)O,且OBOCA=60°.

(1)求證:△ABC是等邊三角形;

(2)判斷點(diǎn)O是否在∠BAC的平分線上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩名運(yùn)動(dòng)員同時(shí)從A地出發(fā)到B地,在直線公路上進(jìn)行騎自行車訓(xùn)練.如圖,反映了甲、乙兩名自行車運(yùn)動(dòng)員在公路上進(jìn)行訓(xùn)練時(shí)的行駛路程S(千米)與行駛時(shí)間t(小時(shí))之間的關(guān)系,下列四種說(shuō)法:①甲的速度為40千米/小時(shí);②乙的速度始終為50千米/小時(shí);③行駛1小時(shí)時(shí),乙在甲前10千米;④甲、乙兩名運(yùn)動(dòng)員相距5千米時(shí),t=0.5t=2t=5.其中正確的個(gè)數(shù)有( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位計(jì)劃在新年期間組織員工到某地旅游,參加旅游的人數(shù)估計(jì)為1025人,甲乙兩家旅行社的服務(wù)質(zhì)量相同,且報(bào)價(jià)都是每人200元,經(jīng)過(guò)協(xié)商,甲旅行社表示可以給每位游客七五折優(yōu)惠,乙旅行社表示可以先免去一位游客的旅游費(fèi)用,然后給予其余游客八折優(yōu)惠.若單位參加旅游的人數(shù)為x人,甲乙兩家旅行社所需的費(fèi)用分別為y1y2

1)寫(xiě)出y1,y2x的函數(shù)關(guān)系式并在所給的坐標(biāo)系中畫(huà)出y1,y2的草圖;

2)根據(jù)圖像回答,該單位選擇哪家旅行社所需的費(fèi)用最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示為一個(gè)計(jì)算程序;

1)若輸入的x3,則輸出的結(jié)果為   ;

2)若開(kāi)始輸入的x為正整數(shù),最后輸出的結(jié)果為40,則滿足條件的x的不同值最多有   

3)規(guī)定:程序運(yùn)行到“判斷結(jié)果是否大于30”為一次運(yùn)算.若運(yùn)算進(jìn)行了三次才輸出,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:sin(﹣x)=﹣sinx, cos(﹣x)=cosx,sinx+y=sinxcosy+cosxsiny,則下列各式不成立的是(

A. cos45°= B. sin75°=

C. sin2x=2sinxcosx D. sinx﹣y=sinxcosy﹣cosxsiny

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,對(duì)角線ACBD相交于點(diǎn)O,點(diǎn)E,F分別為OB,OD的中點(diǎn)延長(zhǎng)AEG,使EG=AE,連接CG

1)求證:ABECDF;

2)當(dāng)AB=AC時(shí),判斷四邊形EGCF是什么形狀?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】【問(wèn)題情境】

已知矩形的面積為aa為常數(shù)a0),當(dāng)該矩形的長(zhǎng)為多少時(shí),它的周長(zhǎng)最?最小值是多少?

【數(shù)學(xué)模型】

設(shè)該矩形的長(zhǎng)為x,周長(zhǎng)為y,yx的函數(shù)表達(dá)式為y=2x+ )(x0).

【探索研究】

小彬借鑒以前研究函數(shù)的經(jīng)驗(yàn),先探索函數(shù)y=x+的圖象性質(zhì)

1)結(jié)合問(wèn)題情境函數(shù)y=x+ 的自變量x的取值范圍是x0,下表是yx的幾組對(duì)應(yīng)值

寫(xiě)出m的值

畫(huà)出該函數(shù)圖象,結(jié)合圖象,得出當(dāng)x=________時(shí),y有最小值y最小=________;

提示在求二次函數(shù)y=ax2+bx+ca≠0)的最大(小)值時(shí),除了通過(guò)觀察圖象還可以通過(guò)配方得到.試用配方法求函數(shù)y=x+ x0)的最小值,解決問(wèn)題(2).

2)【解決問(wèn)題】

直接寫(xiě)出問(wèn)題情境中問(wèn)題的結(jié)論

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△ABC中,點(diǎn)A1,B1,C1分別是BC、AC、AB的中點(diǎn),A2,B2,C2分別是B1C1,A1C1,A1B1的中點(diǎn),依此類推.若△ABC的周長(zhǎng)為1,則△AnBnCn的周長(zhǎng)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案