【題目】如圖,在平面直角坐標(biāo)系中,經(jīng)過(guò)點(diǎn)A的雙曲線(xiàn)同時(shí)經(jīng)過(guò)點(diǎn)B,且點(diǎn)A在點(diǎn)B的左側(cè),點(diǎn)A的橫坐標(biāo)為,∠AOB=∠OBA=45°,則的值為_________.
【答案】1+
【解析】分析:過(guò)A作AM⊥y軸于M,過(guò)B作BD垂直x軸于D,直線(xiàn)BD與AM交于點(diǎn)N,則OD=MN,DN=OM,∠AMO=∠BNA=90°,由等腰三角形的判定與性質(zhì)得出OA=BA,∠OAB=90°,證出∠AOM=∠BAN,由AAS證明△AOM≌△BAN,得出AM=BN=,OM=AN=,求出B(+,),得出方程(+)()=k,解方程即可.
詳解:過(guò)A作AM⊥y軸于M,過(guò)B作BD垂直x軸于D,直線(xiàn)BD與AM交于點(diǎn)N,如圖所示:
則OD=MN,DN=OM,∠AMO=∠BNA=90°,
∴∠AOM+∠OAM=90°,
∵∠AOB=∠OBA=45°,
∴OA=BA,∠OAB=90°,
∴∠OAM+∠BAN=90°,
∴∠AOM=∠BAN,
在△AOM和△BAN中,,
∴△AOM≌△BAN(AAS),
∴AM=BN=,OM=AN=,
∴OD=+,BD=,
∴B(+,),
∴雙曲線(xiàn)y=(x>0)同時(shí)經(jīng)過(guò)點(diǎn)A和B,
∴(+)()=k,
整理得:k2k4=0,
解得:k=1± (負(fù)值舍去),
∴k=1+;
故答案為:1+.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016廣西桂林市)已知任意三角形的三邊長(zhǎng),如何求三角形面積?
古希臘的幾何學(xué)家海倫解決了這個(gè)問(wèn)題,在他的著作《度量論》一書(shū)中給出了計(jì)算公式﹣﹣海倫公式S=(其中a,b,c是三角形的三邊長(zhǎng),p=,S為三角形的面積),并給出了證明
例如:在△ABC中,a=3,b=4,c=5,那么它的面積可以這樣計(jì)算:
∵a=3,b=4,c=5,∴p==6,∴S===6.
事實(shí)上,對(duì)于已知三角形的三邊長(zhǎng)求三角形面積的問(wèn)題,還可用我國(guó)南宋時(shí)期數(shù)學(xué)家秦九韶提出的秦九韶公式等方法解決.
如圖,在△ABC中,BC=5,AC=6,AB=9
(1)用海倫公式求△ABC的面積;
(2)求△ABC的內(nèi)切圓半徑r.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】操作探究:已知在紙面上有一數(shù)軸(如圖所示).
左右折疊紙面,折痕所在的直線(xiàn)與數(shù)軸的交點(diǎn)為“對(duì)折中心點(diǎn)”
操作一:
(1)左右折疊紙面,使1表示的點(diǎn)與-1表示的點(diǎn)重合,則-3表示的點(diǎn)與 表示的點(diǎn)重合;
操作二:
(2)左右折疊紙面,使-1表示的點(diǎn)與3表示的點(diǎn)重合,回答以下問(wèn)題:
①對(duì)折中心點(diǎn)所表示的數(shù)為 ,對(duì)折后5表示的點(diǎn)與數(shù) 表示的點(diǎn)重合;
②若數(shù)軸上A.B兩點(diǎn)之間距離為11(A在B的左側(cè)),且A.B兩點(diǎn)經(jīng)折疊后重合,求A.B兩點(diǎn)表示的數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB為⊙O的直徑,CD是弦,且ABCD于點(diǎn)E。連接AC、OC、BC。
(1)求證: ACO=BCD。
(2)若EB=,CD=,求⊙O的直徑。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 是⊙O的內(nèi)接三角形, , 為⊙O中上一點(diǎn),延長(zhǎng)至點(diǎn),使.
(1)求證: ;
(2)若,求證:AD+BD=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1、圖2分別是8×6的網(wǎng)格,網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)均為1,線(xiàn)段AB的端點(diǎn)在小正方形的頂點(diǎn)上,請(qǐng)?jiān)趫D1、圖2中各畫(huà)一個(gè)圖形,分別滿(mǎn)足以下要求:
(1)在圖1中畫(huà)一個(gè)以線(xiàn)段AB為一邊周長(zhǎng)為10+2的平行四邊形,所畫(huà)圖形的各頂點(diǎn)必須在小正方形的頂點(diǎn)上.
(2)在圖2中畫(huà)一個(gè)以線(xiàn)段AB為一邊的等腰三角形,所畫(huà)等腰三角形的各頂點(diǎn)必須在小正方形的頂點(diǎn)上,并求出該等腰三角形的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某蔬菜加工公司先后兩批收購(gòu)蒜苔(tái)共100噸,第一批蒜苔價(jià)格為1萬(wàn)元/噸;因蒜苔大量上市,第二批價(jià)格跌至0.4萬(wàn)元/噸,這兩批蒜苔共用去52萬(wàn)元.
(1)求兩批各購(gòu)進(jìn)蒜苔多少?lài)崳?/span>
(2)公司收購(gòu)后對(duì)蒜苔進(jìn)行加工,分為粗加工和精加工兩種.粗加工每噸利潤(rùn)400元,精加工每噸利潤(rùn)1600元要求精加工數(shù)量不大于粗加工數(shù)量的三倍.為獲得最大利潤(rùn),精加工數(shù)量應(yīng)為多少?lài)?最大利?rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D是BC邊的中點(diǎn),分別過(guò)點(diǎn)B、C作射線(xiàn)AD的垂線(xiàn),垂足分別為E、F,連接BF、CE.
(1)求證:四邊形BECF是平行四邊形;
(2)若AF=FD,在不添加輔助線(xiàn)的條件下,直接寫(xiě)出與△ABD面積相等的所有三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知長(zhǎng)方形紙片,點(diǎn)在邊上,點(diǎn)在邊上,將沿翻折到,射線(xiàn)與交于點(diǎn).點(diǎn)在邊上,將沿翻折到,射線(xiàn)與交于點(diǎn).
(1)如圖1,若點(diǎn)與點(diǎn)重合,直接寫(xiě)出以為頂點(diǎn)的兩對(duì)相等的角,并求的度數(shù);
(2)如圖2,若點(diǎn)在點(diǎn)的右側(cè),且,,求與的度數(shù);
(3)若點(diǎn)在點(diǎn)的左側(cè),且,求的度數(shù)(用含的代數(shù)式表示).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com