【題目】如圖是某家庭2018年每月交通費支出的條形統(tǒng)計圖,若該家庭2018年月交通費平均支出為a元,則下列結論中正確的是( 。
A. 200≤a≤220B. 220≤a≤240C. 240≤a≤260D. 260≤a≤280
【答案】C
【解析】
首先根據(jù)條形統(tǒng)計圖得出每個月交通費的取值范圍,再根據(jù)平均數(shù)的定義求出a的范圍即可.
解:設i月份的交通費為xi(1≤i≤12,且i為整數(shù)).
由圖可知,240<x1≤250,260<x2<270,280<x3<300,280<x4<290,260<x5<280,240<x6<250,240<x7<260,230<x8<240,180<x9<190,200<x10<210,240<x11<250,270<x12<280,
則(240+260+280+280+260+240+240+230+180+200+240+270)<a<(250+270+300+290+280+250+260+240+190+210+250+280),
解得243<a<255,
綜觀各選項,只有C符合.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩名同學做摸球游戲,他們把三個分別標有1,2,3的大小和形狀完全相同的小球放在一個不透明的口袋中.
(1)求從袋中隨機摸出一球,標號是1的概率;
(2)從袋中隨機摸出一球后放回,搖勻后再隨機摸出一球,若兩次摸出的球的標號之和為偶數(shù)時,則甲勝;若兩次摸出的球的標號之和為奇數(shù)時,則乙勝;試分析這個游戲是否公平?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AB邊的中點,沿EC對折矩形ABCD,使B點落在點P處,折痕為EC,聯(lián)結AP并延長AP交CD于F點,
(1)求證:四邊形AECF為平行四邊形;
(2)如果PA=PC,聯(lián)結BP,求證:△APB△EPC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為2的正方形ABCD中,AE平分∠DAC,AE交CD于點F,CE⊥AE,垂足為點E,EG⊥CD,垂足為點G,點H在邊BC上,BH=DF,連接AH、FH,FH與AC交于點M,以下結論:
①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=AF;⑤=FGDG,其中正確結論的個數(shù)為( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】等腰△ABC中,AB=AC,AD⊥BC于點D,點E是AD上的一點,連接CE,將線段EC繞點E順時針旋轉一定的角度,使得點C落在了點F處,且滿足∠CEF=∠CAB,連接BF
(1)如圖,若∠BAC=60°,則線段AE與BF的數(shù)量關系為 ;
(2)如圖,若∠BAC=90°,求證:BF=AE:(寫出證明過程)
(3)如圖.在(2)的條件下,連接FD并延長分別交CE、CA于點M,N,BC=8,FD=DE,求△DCN和△CMN的面積
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是半圓O的直徑,半徑OC⊥AB,OB=4,D是OB的中點,點E是弧BC上的動點,連接AE, DE.
(1)當點E是弧BC的中點時,求△ADE的面積;
(2)若tan∠AED=,求AE的長;
(3)點F是半徑OC上一動點,設點E到直線OC的距離為m,
①當△DEF是等腰直角三角形時,求m的值;
②延長DF交半圓弧于點G,若弧AG=弧EG,AG∥DE,直接寫出DE的長 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,航拍無人機從A處測得一幢建筑物頂部B的仰角為45°,測得底部C的角為60°,此時航拍無人機與該建筑物的水平距離AD為80m,那么該建筑物的高度BC為_____m(結果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AC:BC:AB=5:12:13,⊙O在△ABC內自由移動,若⊙O的半徑為1,且圓心O在△ABC內所能到達的區(qū)域的面積為,則△ABC的周長為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系xOy中,已知點A(0,1),點P在線段OA上,以AP為半徑的⊙P周長為1.點M從A開始沿⊙P按逆時針方向轉動,射線AM交x軸于點N(n,0),設點M轉過的路程為m(0<m<1).
(1)當m=時,n=_____;
(2)隨著點M的轉動,當m從變化到時,點N相應移動的路徑長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com