【題目】如圖,為⊙的直徑,點,是位于兩側(cè)的半圓上的動點,射線切⊙于點.連接,,交于點是射線上一動點,連接,,且.

1)求證:;

2)填空:

①若,當(dāng)__________時,四邊形是菱形;

②若,當(dāng)_________時,四邊形是正方形。

【答案】1)見解析;(2)①67.5°,②90°.

【解析】

1)要證明,只要證明即可,根據(jù)題目中的條件可以證明,從而可以解答本題;

2)①根據(jù)四邊形是菱形和菱形的性質(zhì),可以求得的度數(shù);②根據(jù)四邊形是正方形,可以求得的度數(shù).

解:(1)如圖,連接,

射線切⊙于點,

,

,即=90°,

;

2)①連接交于點,如圖所示,

四邊形是菱形,,

,,

,

,

,

故答案為:;

四邊形是正方形,

,

,

此時點與點重合,

此時是直徑,

.

故答案為:(1)見解析;(2)①67.5°,②90°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC為直徑作⊙O交AB于點D.

(1)求線段AD的長度;

(2)點E是線段AC上的一點,試問:當(dāng)點E在什么位置時,直線ED與⊙O相切?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,的弦,延長到點,使,連結(jié),過點,垂足為.

1)求證:;

2)求證:的切線;

3)若的半徑為5,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解九年級男同學(xué)的體育考試準(zhǔn)備情況,隨機(jī)抽取部分男同學(xué)進(jìn)行100米跑步測試,按照成績分為優(yōu)秀、良好、合格與不合格四個等級,其中不合格學(xué)生占抽取學(xué)生總數(shù)的,學(xué)校繪制了如下不完整的統(tǒng)計圖:

通過計算補(bǔ)全條形統(tǒng)計圖;

校九年級有300名男生,請估計其中成績未達(dá)到良好和優(yōu)秀的有多少?

某班甲、乙兩位成績優(yōu)秀的同學(xué)被選中參加即將舉行的學(xué)校運(yùn)動會1000米跑步比賽、預(yù)賽分為AB、C三組進(jìn)行,選手由抽簽確定分組,甲、乙兩人恰好分在同一組的概率是多少?請畫出樹狀圖或列表加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點M在函數(shù)y=x>0)的圖象上,過點M分別作x軸和y軸的平行線交函數(shù)y=x>0)的圖象于點B、C.

(1)若點M的坐標(biāo)為(1,3).

①求B、C兩點的坐標(biāo);

②求直線BC的解析式;

(2)求BMC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,E為CD的中點,AE的垂直平分線分別交AD,BC及AB的延長線于點F,G,H,連接HE,HC,OD,連接CO并延長交AD于點M.則下列結(jié)論中:

①FG=2AO;②OD∥HE;③;④2OE2=AHDE;⑤GO+BH=HC

正確結(jié)論的個數(shù)有(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的拋物線對稱軸是直線x=1,與x軸有兩個交點,與y軸交點坐標(biāo)是(03),把它向下平移2個單位后,得到新的拋物線解析式是 y=ax2+bx+c,以下四個結(jié)論:

b2﹣4ac0abc0,4a+2b+c=1a﹣b+c0中,判斷正確的有(

A. ②③④ B. ①②③ C. ②③ D. ①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點EF分別在邊AB,BC上,且AE=AB,將矩形沿直線EF折疊,點B恰好落在AD邊上的點P處,連接BPEF于點Q,對于下列結(jié)論:①EF=2BE②PF=2PE;③FQ=4EQ;④△PBF是等邊三角形.其中正確的是( )

A. ①② B. ②③ C. ①③ D. ①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,半徑OC⊥弦AB于點D,點E為優(yōu)弧AB上一點,連接AE、BE、AC,過點C的直線與EA延長線交于點F,且∠ACF=AEB.

1)求證:CF與⊙O相切;

2)若∠AEB=60°,AB=4,求⊙O的半徑;

3)在(2)的條件下,若AE=4,求EC的長.

查看答案和解析>>

同步練習(xí)冊答案