【題目】如圖,在平面直角坐標系xOy中,A(34),B(0,﹣1),C(4,0)

1)以點B為中心,把△ABC逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的圖形;

2)在(1)中的條件下,

①點C經(jīng)過的路徑弧的長為   (結(jié)果保留π);

②寫出點A'的坐標為   

【答案】1)見解析;(2)①,②(52)

【解析】

1)利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì)畫出A、C的對應點A′C′,然后順次連接即可;

2)①先利用勾股定理計算出BC的長,然后利用弧長公式計算;

②利用(1)中所畫圖形寫出點A′的坐標.

解:(1)如圖,A′BC′為所作;

2)①BC,

故點C經(jīng)過的路徑弧的長=π;

②點A′的坐標為(﹣5,2).

故答案為:π,(﹣5,2).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】定義:形如y|G|G為用自變量表示的代數(shù)式)的函數(shù)叫做絕對值函數(shù).

例如,函數(shù)y|x1|,y,y|x2+2x+3|都是絕對值函數(shù).

絕對值函數(shù)本質(zhì)是分段函數(shù),例如,可以將y|x|寫成分段函數(shù)的形式:

探索并解決下列問題:

1)將函數(shù)y|x1|寫成分段函數(shù)的形式;

2)如圖1,函數(shù)y|x1|的圖象與x軸交于點A10),與函數(shù)y的圖象交于BC兩點,過點Bx軸的平行線分別交函數(shù)y,y|x1|的圖象于D,E兩點.求證ABE∽△CDE

3)已知函數(shù)y|x2+2x+3|的圖象與y軸交于F點,與x軸交于MN兩點(點M在點N的左邊),點P在函數(shù)y|x2+2x+3|的圖象上(點P與點F不重合),PHx軸,垂足為H.若PMHMOF相似,請直接寫出所有符合條件的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小夏同學從家到學校有兩條不同的公交線路.為了解早高峰期間這三條線路上的公交車從甲地到乙地的用時情況,在每條線路上隨機選取了500個班次的公交車,收集了這些班次的公交車用時(單位:分鐘)的數(shù)據(jù),統(tǒng)計如下:

公交車用時

頻數(shù)

公交車路線

總計

59

151

166

124

500

43

57

149

251

500

據(jù)此估計,早高峰期間,乘坐線路用時不超過35分鐘的概率為__________,若要在40分鐘之內(nèi)到達學校,應盡量選擇乘坐__________(填)線路.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC的三個頂點都在邊長為1的小正方形組成的網(wǎng)格的格點上,以點O為原點建立直角坐標系,回答下列問題:

(1)將ABC先向上平移5個單位,再向右平移1個單位得到△A1B1C1,畫出△A1B1C1,并直接寫出A1的坐標   

(2)將△A1B1C1繞點(0,﹣1)順時針旋轉(zhuǎn)90°得到△A2B2C2,畫出A2B2C2;

(3)觀察圖形發(fā)現(xiàn),A2B2C2是由ABC繞點   順時針旋轉(zhuǎn)   度得到的.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)yy的圖象上分別有一點A,B,且ABx軸,ADx軸于D,BCx軸于C,若矩形ABCD的面積為8,則ba=( 。

A.8B.8C.4D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的口袋中裝有三個小球,上面分別標有數(shù)字3、4、5,這些小球除數(shù)字不同外其余均相同.

1)從口袋中隨機摸出一個小球,小球上的數(shù)字是偶數(shù)的概率是______

2)從口袋中隨機摸出一個小球,記下數(shù)字后放回,再隨機摸出一個小球,記下數(shù)字,請用畫樹狀圖(或列表)的方法,求兩次摸出的小球上的數(shù)字都是奇數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面內(nèi)容,并按要求解決問題:

問題:在平面內(nèi),已知分別有2個點,3個點,4個點,5個點,,個點,其中任意三個點都不在同一條直線上經(jīng)過每兩點畫一條直線,它們可以分別畫多少條直線?

探究:為了解決這個問題,希望小組的同學們,設(shè)計了如下表格進行探究:(為了方便研究問題,圖中每條線段表示過線段兩端點的一條直線)

點數(shù)

2

3

4

5

示意圖

直線條數(shù)

1

請解答下列問題:

1)請幫助希望小組歸納,并直接寫出結(jié)論:當平面內(nèi)有個點時,直線條數(shù)為______;

2)若某同學按照本題中的方法,共畫了28條直線,求該平面內(nèi)有多少個已知點?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線yax2bxca≠0)的對稱軸為直線x2,與x軸的一個交點坐標為(4,0),其部分圖象如圖所示,下列結(jié)論正確的是(  )

A.x2時,yx增大而增大B.abc0

C.拋物線過點(-40D.4ab0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在四邊形ABCD中,∠BAD=∠BDC90°,ABAD,∠DCB60°,CD8

1)若PBD上一點,且PACD,求∠PAB的度數(shù).

2)①將圖1中的△ABD繞點B順時針旋轉(zhuǎn)30°,點D落在邊BC上的E處,AEBD于點O,連接DE,如圖2,求證:DE2DODB;

②將圖1中△ABD繞點B旋轉(zhuǎn)α得到△A'BD'(AA',DD'是對應點),若CD'CD,則cosα的值為

查看答案和解析>>

同步練習冊答案