某校初三年級“數(shù)學(xué)興趣小組”實地測量操場旗桿的高度.旗桿的影子落在操場和操場邊的土坡上,如圖所示,測得在操場上的影長BC=20 m,斜坡上的影長CD=2m,已知斜坡CD與操場平面的夾角為45°,同時測得身高l.65m的學(xué)生在操場 上的影長為3.3 m.求旗桿AB的高度。(結(jié)果精確到1m)

  (提示:同一時刻物高與影長成正比.參考數(shù)據(jù):≈1.414.≈1.732.≈2.236)


過D點作CE的垂線,垂足為點F,連接AD并延長交CE于點G,設(shè)學(xué)生的身高為MN。

 

【考點】解直角三角形的應(yīng)用,銳角三角函數(shù),特殊角的三角函數(shù)值,相似三角形的判定和性質(zhì)。

【分析】如圖,作出旗桿AB的在地面的影長BG,再根據(jù)同時測得的身高l.65m學(xué)生在操場上的影長為3.3 m和∠DCF=45°即可求解。


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


鄭州市花卉種植專業(yè)戶王有才承包了30畝花圃,分別種植康乃馨和玫瑰花,有關(guān)成本、銷售額見下表:

種植種類

成本(萬元/畝)

銷售額(萬元/畝)

康乃馨

2.4

3

玫瑰花

2

2.5

(1)2012年,王有才種植康乃馨20畝、玫瑰花10畝,求王有才這一年共收益多少萬元?(收益=銷售額-成本)

(2)2013年,王有才繼續(xù)用這30畝花圃全部種植康乃馨和玫瑰花,計劃投入成本不超過70萬元.若每畝種植的成本、銷售額與2012年相同,要獲得最大收益,他應(yīng)種植康乃馨和玫瑰花各多少畝?

(3)已知康乃馨每畝需要化肥500kg,玫瑰花每畝需要化肥700kg,根據(jù)(2)中的種植畝數(shù),為了節(jié)約運輸成本,實際使用的運輸車輛每次裝載化肥的總量是原計劃每次裝載總量的2倍,結(jié)果運輸全部化肥比原計劃減少2次.求王有才原定的運輸車輛每次可裝載化肥多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在平面直角坐標系中,矩形OABC四個頂點的坐標分別為O(0,0),A(0,3),B(6,3),C(6,0),拋物線過點B。

(1)若a=-l,且拋物線與矩形有且只有三個交點B、D、E,求△ BDE的面積S的最大值;

(2)若拋物線與矩形有且只有三個交點B、M、N,線段MN的垂直平分線l過點C,交線段OA于點F。當AF=1時,求拋物線的解析式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,某商場設(shè)立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,并規(guī)定:顧客購物10元以上就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會,當轉(zhuǎn)盤停止時,指針落在哪一區(qū)域就可以獲得相應(yīng)的獎品.下表是活動進行中的一組統(tǒng)計數(shù)據(jù):

(1)計算并完成表格:

(2)請估計,當n很大時,頻率將會接近多少?

(3)假如你去轉(zhuǎn)動轉(zhuǎn)盤一次,你獲得鉛筆的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


 如圖,矩形ABCD的BC邊在直線l上,AD=5,AB=3, P為直線l上的點,且△AEP是腰長為5的等腰三角形,則BP=        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在平行四邊形ABCD中,對角線AC、BD相交于點O,過點O作直線EF⊥BD,分別交AD、BC于點E和點F,求證:四邊形BEDF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在半徑為2的扇形OAB中,∠AOB=90°,點C是弧AB上的—個動點(不與A,B重合),OD⊥BC,OE⊥AC,垂足分別為D,E,則DE的長度(    )

A.1    B.2    C.    D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖①是3×3菱形格,將其中兩個格子涂黑,并且使得涂黑后的整個圖案是軸對稱圖形,約定繞菱形ABCD的中心旋轉(zhuǎn)能重合的圖案都視為同一種,例②中四幅圖就視為同一種,則得到不同共有【    】

 A.4種         B.5種        C.6種        D.7種

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖1,在平面直角坐標系中,直線AB與軸交于點A,與軸交于點B,與直線OC:交于點C.

(1)若直線AB解析式為

①求點C的坐標;

②求△OAC的面積.

(2)如圖2,作的平分線ON,若AB⊥ON,垂足為E, OA=4,P、Q分別為線段OA、OE上的動點,連結(jié)AQ與PQ,試探索AQ+PQ是否存在最小值?若存在,求出這個最小值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案