【題目】如圖,正五邊形ABCDE放入某平面直角坐標(biāo)系后,若頂點(diǎn)A,B,C,D的坐標(biāo)分別是(0,a),(﹣3,2),(b,m),(c,m),則點(diǎn)E的坐標(biāo)是( )
A.(2,﹣3)
B.(2,3)
C.(3,2)
D.(3,﹣2)
【答案】C
【解析】解:∵點(diǎn)A坐標(biāo)為(0,a), ∴點(diǎn)A在該平面直角坐標(biāo)系的y軸上,
∵點(diǎn)C、D的坐標(biāo)為(b,m),(c,m),
∴點(diǎn)C、D關(guān)于y軸對(duì)稱,
∵正五邊形ABCDE是軸對(duì)稱圖形,
∴該平面直角坐標(biāo)系經(jīng)過點(diǎn)A的y軸是正五邊形ABCDE的一條對(duì)稱軸,
∴點(diǎn)B、E也關(guān)于y軸對(duì)稱,
∵點(diǎn)B的坐標(biāo)為(﹣3,2),
∴點(diǎn)E的坐標(biāo)為(3,2).
故選:C.
由題目中A點(diǎn)坐標(biāo)特征推導(dǎo)得出平面直角坐標(biāo)系y軸的位置,再通過C、D點(diǎn)坐標(biāo)特征結(jié)合正五邊形的軸對(duì)稱性質(zhì)就可以得出E點(diǎn)坐標(biāo)了.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠B=60°,內(nèi)切圓O與邊AB、BC、CA分別相切于點(diǎn)D、E、F,則∠DEF的度數(shù)為°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某邊防局接到情報(bào),近海處有一可疑船只正向公海方向行駛,邊防局迅速派出快艇追趕(如圖1).圖2中、分別表示兩船相對(duì)于海岸的距離(海里)與追趕時(shí)間(分)之間的關(guān)系.
(1)求、的函數(shù)解析式;
(2)當(dāng)逃到離海岸12海里的公海時(shí),將無法對(duì)其進(jìn)行檢查.照此速度,能否在逃入公海前將其攔截?若能,請(qǐng)求出此時(shí)離海岸的距離;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某店準(zhǔn)備購進(jìn) A,B 兩種口罩,A 種口罩毎盒的進(jìn)價(jià)比 B 種口罩每盒的進(jìn)價(jià)多 10 元,用 2000 元購進(jìn) A種口罩和用 1500 元購進(jìn) B 種口罩的數(shù)量相同.
(1)A 種口罩每盒的進(jìn)價(jià)和 B 種口罩每盒的進(jìn)價(jià)各是多少元?
(2)商店計(jì)劃用不超過 1770 元的資金購進(jìn) A,B 兩種口罩共 50 盒,其中 A 種口罩的數(shù)量應(yīng)多于 B 種口罩?jǐn)?shù)量,該商店有幾種進(jìn)貨方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀以下內(nèi)容:
已知實(shí)數(shù)m,n滿足m+n=5,且求k的值,
三位同學(xué)分別提出了以下三種不同的解題思路:
甲同學(xué):先解關(guān)于m,n的方程組,再求k的值、
乙同學(xué):將原方程組中的兩個(gè)方程相加,再求k的值
丙同學(xué):先解方程組,再求k的值
(1)試選擇其中一名同學(xué)的思路,解答此題
(2)試說明在關(guān)于x、y的方程組中,不論a取什么實(shí)數(shù),x+y的值始終不變。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形的頂點(diǎn)A(1,1)、B(3,1),規(guī)定把等邊△ABC“先沿x軸翻折,再向左平移1個(gè)單位”為一次変換,如果這樣連續(xù)經(jīng)過2016次變換后,等邊△ABC的頂點(diǎn)C的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示,ABCD是某公園的平面示意圖,A、B、C、D分別是該公園的四個(gè)入口,兩條主干道AC、BD交于點(diǎn)O,經(jīng)測量AB=0.5km,AC=1.2km,BD=1km,請(qǐng)你幫助公園的管理人員解決以下問題:
(1)公園的面積為 km2;
(2)如圖②,公園管理人員在參觀了武漢東湖綠道后,為提升游客游覽的體驗(yàn)感,準(zhǔn)備修建三條綠道AN、MN、CM,其中點(diǎn)M在OB上,點(diǎn)N在OD上,且BM=ON(點(diǎn)M與點(diǎn)O、B不重合),并計(jì)劃在△AON與△COM兩塊綠地所在區(qū)域種植郁金香,求種植郁金香區(qū)域的面積;
(3)若修建(2)中的綠道每千米費(fèi)用為10萬元,請(qǐng)你計(jì)算該公園修建這三條綠道投入資金的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)( ﹣1)﹣1+ ﹣6sin45°+(﹣1)2009 .
(2)cos245°+ ﹣ tan30°.
(3) sin45°.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com