【題目】如圖,ABCD的對(duì)角線AC、BD相交于點(diǎn)O,AE=CF.

(1) 求證:BOE≌△DOF;

(2) 連接DE、BF,若BDEF,試探究四邊形EBDF的形狀,并對(duì)結(jié)論給予證明.

【答案】(1)見(jiàn)解析;(2)四邊形EBDF為菱形,理由見(jiàn)解析

【解析】

(1)根據(jù)平行四邊形的性質(zhì)可得BO=DO,AO=CO,再利用等式的性質(zhì)可得EO=FO,然后再利用SAS定理判定BOE≌△DOF即可;

(2)根據(jù)BO=DO,F(xiàn)O=EO可得四邊形BEDF是平行四邊形,再根據(jù)對(duì)角線互相垂直的平行四邊形是菱形可得四邊形EBDF為菱形.

證明:(1) ∵四邊形ABCD是平行四邊形,

BO=DO,AO=CO,

AE=CF,

AO﹣AE=CO﹣FO,

EO=FO,

BOEDOF

,

∴△BOE≌△DOF(SAS);

(2) 四邊形EBDF為菱形,等三角形的判定,以及菱形的判定,關(guān)鍵是掌握

理由:∵BO=DO,F(xiàn)O=EO,

∴四邊形BEDF是平行四邊形,

BDEF,

∴四邊形EBDF為菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合題
(1)如圖1,△ABC中,∠BAC=90°,AB=AC,AE是過(guò)A點(diǎn)的一條直線,且B、C在AE的異側(cè),BD⊥AE于D,CE⊥AE于E,求證:BD=DE+CE.

(2)若直線AE繞點(diǎn)A旋轉(zhuǎn)到圖2的位置時(shí)(BD<CE),其余條件不變,問(wèn)BD與DE、CE的關(guān)系如何?請(qǐng)予以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于一個(gè)圖形通過(guò)兩種不同的方法計(jì)算它的面積,可以得到一個(gè)數(shù)學(xué)等式,例如圖1可以得到,請(qǐng)解答下列問(wèn)題:

(1)寫(xiě)出圖2中所表示的數(shù)學(xué)等式;

(2)根據(jù)整式乘法的運(yùn)算法則,通過(guò)計(jì)算驗(yàn)證上述等a式;

(3)a+b+c=l0ab+ac+bc=35,利用得到的結(jié)論,求.的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線a:y=2x﹣6,和直線b:y=﹣ x+4相交于點(diǎn)H,分別與x、y軸交于點(diǎn)A、B、C、D,點(diǎn)P在x軸上,過(guò)點(diǎn)P作x軸的垂線,分別與直線a、b交于點(diǎn)E、F.

(1)求點(diǎn)H的坐標(biāo);
(2)判斷直線a、b的位置關(guān)系,并說(shuō)明理由;
(3)設(shè)點(diǎn)P的橫坐標(biāo)為m,當(dāng)m為何值時(shí),以D、E、F、O為頂點(diǎn)的四邊形是
平行四邊形,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,正方形ABCD的位置如右圖所示,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,2).延長(zhǎng)CBx軸于點(diǎn)A1,作正方形A1B1C1C;延長(zhǎng)C1B1x軸于點(diǎn)A2,作正方形A2B2C2C1,…按這樣的規(guī)律進(jìn)行下去,第2017個(gè)正方形的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小龍?jiān)趯W(xué)校組織的社會(huì)調(diào)查活動(dòng)中負(fù)責(zé)了解他所居住的小區(qū)450戶(hù)居民的家庭收入情況、他從中隨機(jī)調(diào)查了40戶(hù)居民家庭收入情況(收入取整數(shù),單位:元),并繪制了如下的頻數(shù)分布表和頻數(shù)分布直方圖.

分組

頻數(shù)

百分比

600≤x800

2

5%

800≤x1000

6

15%

1000≤x1200

45%

9

22.5%

1600≤x1800

2

合計(jì)

40

100%

根據(jù)以上提供的信息,解答下列問(wèn)題:
1)補(bǔ)全頻數(shù)分布表;
2)補(bǔ)全頻數(shù)分布直方圖;
3)請(qǐng)你估計(jì)該居民小區(qū)家庭屬于中等收入(大于1000不足1600元)的大約有多少戶(hù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市路橋公司決定對(duì)AB兩地之間的公路進(jìn)行改造,并由甲工程隊(duì)從A地向B地方向修筑,乙工程隊(duì)從B地向A地方向修筑.已知甲工程隊(duì)先施工2天,乙工程隊(duì)再開(kāi)始施工,乙工程隊(duì)施工幾天后因另有任務(wù)提前離開(kāi),余下的任務(wù)由甲工程隊(duì)單獨(dú)完成,直到公路修通.甲、乙兩個(gè)工程隊(duì)修公路的長(zhǎng)度y(米)與施工時(shí)間x(天)之間的函數(shù)關(guān)系如圖所示.下列說(shuō)法:①乙工程隊(duì)每天修公路240米;②甲工程隊(duì)每天修公路120米;③甲比乙多工作6天;④A、B兩地之間的公路總長(zhǎng)是1680米.其中正確的說(shuō)法有( 。

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,,直線軸于點(diǎn),平移線段,若點(diǎn)的對(duì)應(yīng)點(diǎn)分別為,則線段的長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+5x+3﹣3m=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)若m為負(fù)整數(shù),求此時(shí)方程的根.

查看答案和解析>>

同步練習(xí)冊(cè)答案