【題目】如圖,在矩形中,點(diǎn)為對(duì)角線的中點(diǎn),過點(diǎn)作交于點(diǎn),交于點(diǎn),連接,.
(1)求證:四邊形是菱形;
(2)連接,若,,求的長.
【答案】(1)見解析 (2)
【解析】
(1)由矩形的性質(zhì)可得∠ACB=∠DAC,然后利用“ASA”證明△AOF和△COE全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得OE=OF,即可證四邊形AECF是菱形;
(2)連接BD,,根據(jù)平行四邊形的性質(zhì)可得AF=CF=10,用勾股定理求得FD=6,在△BDC中,∠DCB=90°,用勾股定理求出BD的值,即可解答.
(1)∵四邊形ABCD是矩形,
∴AD∥BC,
∴∠ACB=∠DAC,
∵O是AC的中點(diǎn),
∴AO=CO,
在△AOF和△COE中,
∴△AOF≌△COE(ASA),
∴OE=OF,且AO=CO,
∴四邊形AECF是平行四邊形,
又∵EF⊥AC,
∴四邊形AECF是菱形;
(2)連接BD,
四邊形AFCE是平行四邊形
AF=CF=10
∠CDF=90°
CF=10,CD=AB=8
FD=6
AD=AF+DF=6+10=16
∠DAB=90°
==
BO=
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,點(diǎn)在邊上(點(diǎn)與點(diǎn)、不重合),過點(diǎn)作,與邊相交于點(diǎn),與邊的延長線相交于點(diǎn).
(1)與有什么樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論:____________________
(2)、、的數(shù)量之間具有怎樣的關(guān)系?并證明你所得到的結(jié)論.
(3)如果正方形的邊長是1,,直接寫出點(diǎn)到直線的距離.
解:(1)與的數(shù)量關(guān)系:____________________
(2)、、的數(shù)量之間的關(guān)系是 .
證明:
(3)點(diǎn)到直線的距離是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的圖象過點(diǎn)C(0,1),頂點(diǎn)為Q(2,3),點(diǎn)D在x軸正半軸上,線段OD=OC.
(1)求拋物線的解析式;
(2)拋物線上是否存在點(diǎn)M,使得△CDM是以CD為直角邊的直角三角形?若存在,請求出M點(diǎn)的坐標(biāo);若不存在,請說明理由;
(3)將直線CD繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)45°所得直線與拋物線相交于另一點(diǎn)E,連接QE.若點(diǎn)P是線段QE上的動(dòng)點(diǎn),點(diǎn)F是線段OD上的動(dòng)點(diǎn),問:在P點(diǎn)和F點(diǎn)的移動(dòng)過程中,△PCF的周長是否存在最小值?若存在,求出這個(gè)最小值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】古希臘的畢達(dá)哥拉斯學(xué)派由古希臘哲學(xué)家畢達(dá)哥拉斯所創(chuàng)立,畢達(dá)哥拉斯學(xué)派認(rèn)為數(shù)是萬物的本原,事物的性質(zhì)是由某種數(shù)量關(guān)系決定的,如他們研究各種多邊形數(shù):記第n個(gè)k邊形數(shù)N(n,k)=n2+n(n≥1,k≥3,k、n都為整數(shù)),
如第1個(gè)三角形數(shù)N(1,3)=×12+×1=1;
第2個(gè)三角形數(shù)N(2,3)=×22+×2=3;
第3個(gè)四邊形數(shù)N(3,4)=×32+×3=9;
第4個(gè)四邊形數(shù)N(4,4)=×42+×4=16.
(1)N(5,3)=________,N(6,5)=________;
(2)若N(m,6)比N(m+2,4)大10,求m的值;
(3)若記y=N(6,t)-N(t,5),試求出y的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在方格紙內(nèi)將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標(biāo)出了點(diǎn)C的對(duì)應(yīng)點(diǎn)C′.(利用網(wǎng)格點(diǎn)和三角板畫圖)
(1)畫出平移后的△A′B′C′.
(2)畫出AB邊上的中線線CD;
(3)在整個(gè)平移過程中,線段BC掃過的面積是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠A=50°,點(diǎn)D,E分別是邊AC,AB上的點(diǎn)(不與A,B,C重合),點(diǎn)P是平面內(nèi)一動(dòng)點(diǎn)(P與D,E不在同一直線上),設(shè)∠PDC=∠1,∠PEB=∠2,∠DPE=∠α.
(1)若點(diǎn)P在邊BC上運(yùn)動(dòng)(不與點(diǎn)B和點(diǎn)C重合),如圖(1)所示,則∠1+∠2=________
(用α的代數(shù)式表示).
(2)若點(diǎn)P在ABC的外部,如圖(2)所示,則∠α,∠1,∠2之間有何關(guān)系?寫出你的結(jié)論,并說明理由.
(3)當(dāng)點(diǎn)P在邊CB的延長線上運(yùn)動(dòng)時(shí),試畫出相應(yīng)圖形,標(biāo)注有關(guān)字母與數(shù)字,并寫出對(duì)應(yīng)的∠α,∠1,∠2之間的關(guān)系式.(不需要證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形網(wǎng)格中,每個(gè)小正方形的邊長都為1個(gè)單位長度,△ABC的三個(gè)頂點(diǎn)的位置。如圖所示,
現(xiàn)將△ABC平移后得△EDF,使點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)D,點(diǎn)A對(duì)應(yīng)點(diǎn)為點(diǎn)E.
(1)畫出△EDF;
(2)線段BD與AE有何關(guān)系? ____________;
(3)連接CD、BD,則四邊形ABDC的面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生志愿服務(wù)小組在“學(xué)雷鋒”活動(dòng)中購買了一批牛奶到江陰兒童福利院看望孤兒.如果分給每位兒童5盒牛奶,那么剩下18盒牛奶;如果分給每位兒童6盒牛奶,那么最后一位兒童分不到6盒,但至少能有3盒.則這個(gè)兒童福利院的兒童最少有________個(gè),最多有________個(gè).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com