【題目】如圖1,直線MN與直線AB、CD分別交于點E、F,∠1與∠2互補.
(1)試判斷直線AB與直線CD的位置關系,并說明理由;
(2)如圖2,∠BEF與∠EFD的角平分線交于點P,EP與CD交于點G,點H是MN上一點,且GH⊥EG,求證:PF∥GH;
(3)如圖3,在(2)的條件下,連接PH,K是GH上一點使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請求出其值;若變化,說明理由.
【答案】(1)證明見解析;(2)證明見解析;(3)45°
【解析】
試題(1)利用對頂角相等、等量代換可以推知同旁內角∠AEF、∠CFE互補,所以易證AB∥CD;
(2)利用(1)中平行線的性質推知°;然后根據角平分線的性質、三角形內角和定理證得∠EPF=90°,即EG⊥PF,故結合已知條件GH⊥EG,易證PF∥GH;
(3)利用三角形外角定理、三角形內角和定理求得∠4=90°-∠3=90°-2∠2;然后由鄰補角的定義、角平分線的定義推知∠QPK=∠EPK=45°+∠2;最后根據圖形中的角與角間的和差關系求得∠HPQ的大小不變,是定值45°.
試題解析:(1)如圖1,
∵∠1與∠2互補,
∴∠1+∠2=180°.
又∵∠1=∠AEF,∠2=∠CFE,
∴∠AEF+∠CFE=180°,
∴AB∥CD;
(2)如圖2,由(1)知,AB∥CD,
∴∠BEF+∠EFD=180°.
又∵∠BEF與∠EFD的角平分線交于點P,
∴∠FEP+∠EFP=(∠BEF+∠EFD)=90°,
∴∠EPF=90°,即EG⊥PF.
∵GH⊥EG,
∴PF∥GH;
(3)∠HPQ的大小不發(fā)生變化,理由如下:
如圖3,∵∠1=∠2,
∴∠3=2∠2.
又∵GH⊥EG,
∴∠4=90°-∠3=90°-2∠2.
∴∠EPK=180°-∠4=90°+2∠2.
∵PQ平分∠EPK,
∴∠QPK=∠EPK=45°+∠2.
∴∠HPQ=∠QPK-∠2=45°,
∴∠HPQ的大小不發(fā)生變化,一直是45°.
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長為半徑作弧,分別交AB,AD于點M,N;②分別以M,N為圓心,以大于 MN的長為半徑作弧,兩弧相交于點P;③作AP射線,交邊CD于點Q,若DQ=2QC,BC=3,則平行四邊形ABCD周長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC和△DBE中,BC=BE,還需要添加兩個條件才能使△ABC≌△DBE,則不能添加的一組條件是( )
A. AC=DE,∠C=∠E B. BD=AB,AC=DE C. AB=DB,∠A=∠D D. ∠C=∠E,∠A=∠D
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知正比例函數y= x的圖象與反比例函數y= 的圖象交于A(a,﹣2),B兩點.
(1)求反比例函數的表達式和點B的坐標;
(2)P是第一象限內反比例函數圖象上一點,過點P作y軸的平行線,交直線AB于點C,連接PO,若△POC的面積為3,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB⊥y軸,垂足為B,將△ABO繞點A逆時針旋轉到△AB1O1的位置,使點B的對應點B1落在直線y=﹣ x上,再將△AB1O1繞點B1逆時針旋轉到△A1B1O1的位置,使點O1的對應點O2落在直線y=﹣ x上,依次進行下去…若點B的坐標是(0,1),則點O12的縱坐標為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀對人成長的影響是巨大的,一本好書往往能改變人的一生.如圖是某校三個年級學生人數分布的扇形統(tǒng)計圖,其中八年級學生人數為408人,下表是該校學生閱讀課外書籍情況統(tǒng)計表.根據圖表中的信息,可知該校學生平均每人讀課外書的本數是( )
A. 2本 B. 3本 C. 4本 D. 5本
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形OABC的邊OA,OC分別在x軸、y軸上,點B在第一象限,點D在邊BC上,且∠AOD=30°,四邊形OA′B′D與四邊形OABD關于直線OD對稱(點A′和A,B′和B分別對應).若AB=1,反比例函數y= (k≠0)的圖象恰好經過點A′,B,則k的值為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com