【題目】已知:直線,點EF分別在直線ABCD上,點M為兩平行線內(nèi)部一點.

1)如圖1,∠AEM,∠M,∠CFM的數(shù)量關(guān)系為________;(直接寫出答案)

2)如圖2MEBMFD的角平分線交于點N,若EMF等于130°,求ENF的度數(shù);

3)如圖3,點G為直線CD上一點,延長GM交直線AB于點Q,點PMG上一點,射線PFEH相交于點H,滿足,設(shè)EMF,求H的度數(shù)(用含α的代數(shù)式表示)

【答案】1;(2;(3

【解析】

1)過點,利用平行線的性質(zhì)可得,由,經(jīng)過等量代換可得結(jié)論;

2)過,利用平行線的性質(zhì)以及角平分線的定義計算即可.

3)如圖中設(shè),,則,設(shè).證明,求出即可解決問題.

1)如圖1,過點,

,

,,

,

2)過,

,

,

,,

,分別平分

,,

,

3)如圖中設(shè),,則,,設(shè)

,

,

,,

,,

,

,

,

,

,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】下列各式,屬于二元一次方程的個數(shù)有( 。

①xy+2xy7②4x+1xy;+y5;④xy⑤x2y22;⑥6x2y;⑦x+y+z1⑧yy1)=2x2y2+xy

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù) 的部分對應值如下表:

-1

0

1

3

-3

1

3

1

則下列判斷中正確的是( )
A.拋物線開口向上
B.拋物線與 軸交于負半軸
C.當 時,
D.方程 的正根在3與4之間

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】己知⊙O的半徑為 ,弦AB=2,以AB為底邊,在圓內(nèi)畫⊙0的內(nèi)接等腰△ABC,則底邊AB邊上的高CD長為( )
A. +1
B. ﹣1
C. ﹣1
D. +1或 +1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(數(shù)學經(jīng)驗)三角形的中線的性質(zhì):三角形的中線等分三角形的面積.

(經(jīng)驗發(fā)展)面積比和線段比的聯(lián)系:

1)如圖1,MABCAB上一點,且BM=2AM.若ABC的面積為a,若CBM的面積為S,則S=_______(用含a的代數(shù)式表示)

(結(jié)論應用)(2)如圖2,已知CDE的面積為1,,求ABC的面積.

(遷移應用)(3)如圖3.在ABC中,MAB的三等分點()NBC的中點,若ABC的面積是1,請直接寫出四邊形BMDN的面積為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠BAD130°,∠B=∠D90°,點E,F分別是線段BC,DC上的動點.當AEF的周長最小時,則∠EAF的度數(shù)為(  )

A. 90°B. 80°C. 70°D. 60°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為1的正方形ABCD中,P為對角線AC上的任意一點,分別連接PB、PD,PE⊥PB,交CD與E.

(1)求證:PE=PD;
(2)當E為CD的中點時,求AP的長;
(3)設(shè)AP=x(0<x< ),四邊形BPEC的面積為y,求證:y= ﹣x)2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△OAB中,∠OBA=90°,且點B的坐標為(0,4).

(1)寫出點A的坐標.
(2)畫出△OAB繞點O順時針旋轉(zhuǎn)90°后的△OA1B1;
(3)求點A旋轉(zhuǎn)到點A1所經(jīng)過的路線長(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知兩個變量之間的變化情況如圖所示,根據(jù)圖像回答下列問題.

(1)寫出的變化范圍;

(2)時,求的對應值;

(3)為何值時,的值最大;

(4)在什么范圍時,的值在不斷增加.

查看答案和解析>>

同步練習冊答案