如圖,秋千拉繩長AB為3米,靜止時踩板離地面0.5米,某小朋友蕩該秋千時,秋千在最高處時踩板離地面2米(左右對稱),請計算該秋千所蕩過的圓弧長(精確到0.1米)?
考點(diǎn):弧長的計算
專題:應(yīng)用題
分析:根據(jù)題意先作輔助線BG⊥AC于G,然后確定AG=1.5m,根據(jù)在直角三角形中,一條直角邊等于斜邊的一半,得∠BAG=60°,從而求得∠BAF=120°,最后求出弧長.
解答:解:由題意得,BE=2m,AC=3m,CD=0.5m,
作BG⊥AC于G,則AG=AD-GD=AC+CD-BE=1.5m,
由于AB=3,所以在Rt△ABG中,∠BAG=60°,
根據(jù)對稱性,知∠BAF=120°,
故秋千所蕩過的圓弧長是
120π×3
180
=2π≈6.3(米).
點(diǎn)評:本題考查了弧長的計算,屬于基礎(chǔ)題,解答本題的關(guān)鍵是熟練掌握弧長的計算公式l=
nπR
180
(弧長為l,圓心角度數(shù)為n,圓的半徑為R).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

計算:(
1
3
)-1-(
5
+
7
)0+(
3
)2-
2
sin45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,EF是Rt△ABC的中位線,D是BC延長線上的一點(diǎn),∠DEC=∠A.求證:四邊形EDCF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

化簡并求值:(
x+2
x2-2x
-
x-1
x2-4x+4
)÷
x+2
x2-4
,其中x=
1
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

|-3|+(-1)0-(
1
2
-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解二元一次方程組.
(1)
x+y=25
2x-y=8
;              
(2)
x+y
2
=
3x+4y
5
x+y
2
=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面坐標(biāo)系中,直線y=kx-3過點(diǎn)(1,6),求不等式kx-3<3x-1的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2012年5月“國際保護(hù)鯨魚組織”準(zhǔn)備派遣三艘護(hù)衛(wèi)船在南極進(jìn)行阻止“日本捕鯨船”的“護(hù)鯨行動”.在雷達(dá)顯示圖上,標(biāo)明了三艘護(hù)衛(wèi)船的坐標(biāo)為O(0,0)、B(40,0)、C(40,30),三艘護(hù)衛(wèi)船安裝有相同的探測雷達(dá),雷達(dá)的有效探測范圍是半徑為r的圓形區(qū)域(只考慮在海平面上的探測).
(1)某時刻海面上出現(xiàn)一艘日本捕鯨船A,在護(hù)衛(wèi)船C測得點(diǎn)A位于東南方向上,同時在護(hù)衛(wèi)船B測得A位于北偏東60°方向上,求護(hù)衛(wèi)船B到捕鯨船A的距離(精確到0.1);
(2)若在三艘護(hù)衛(wèi)船組成的△OBC區(qū)域內(nèi)沒有探測盲點(diǎn),求雷達(dá)的最小有效探測半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

方程組
x+y=3
x-y=1
的解是
 

查看答案和解析>>

同步練習(xí)冊答案