如圖,已知∠AOB, OE平分∠AOC, OF平分∠BOC.
(1)若∠AOB是直角,∠BOC=60°,求∠EOF的度數(shù);
(2)猜想∠EOF與∠AOB的數(shù)量關(guān)系;
(3)若∠AOB+∠EOF=156°,則∠EOF是多少度?
(1)45°;(2)∠EOF=∠AOB;(3)52°.
解析試題分析:(1)先求出∠AOC的度數(shù),再根據(jù)角平分線的定義求出∠EOC與∠COF的度數(shù),然后相減即可得解;
(2)設(shè)∠COF=x,∠EOB=y,先用x,y表示出∠EOF,再用x,y表示出∠AOB,然后得出兩者的關(guān)系;
(3)根據(jù)(2)的規(guī)律,∠EOF的度數(shù)等于∠AOB的一半,進(jìn)行求解即可.
試題解析:(1)∵∠AOB是直角,∠BOC=60°,∴∠AOC=∠AOB+∠BOC=90°+60°=150°,∵OE平分∠AOC,OF平分∠BOC,∴∠EOC=∠AOC=×150°=75°,∠COF=∠BOC=×60°=30°,∴∠EOF=∠EOC﹣∠COF=75°﹣30°=45°;
(2)設(shè)∠COF=x,∠EOB=y,∵OE平分∠AOC,OF平分∠BOC,∴∠BOF=x,∠AOE=∠EOC=2x+y,∴∠EOF=x+y,∠AOB=2x+2y,∴∠EOF=∠AOB;
(3)∵∠EOF=∠AOB,∴∠AOB=2∠EOF,∵∠AOB+∠EOF=156°,∴3∠EOF=156°,∴∠EOF=52°.
考點(diǎn):角的計(jì)算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知直線l1∥l2,直線l3和直線l1、l2交于點(diǎn)C和D,在直線CD上有一點(diǎn)P.
(1)如果P點(diǎn)在C、D之間運(yùn)動(dòng)時(shí),問∠PAC,∠APB,∠PBD有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.(提示:過(guò)點(diǎn)P作PE∥l1)
(2)若點(diǎn)P在C、D兩點(diǎn)的外側(cè)運(yùn)動(dòng)時(shí)(P點(diǎn)與點(diǎn)C、D不重合),試探索∠PAC,∠APB,∠PBD之間的關(guān)系又是如何?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,直線相交于點(diǎn)。
(1)的對(duì)頂角是_______。圖中共有對(duì)頂角 對(duì)。
(2)若, , 求的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,直線AB與CD相交于點(diǎn)O,OP是∠BOC的平分線,OE⊥AB,OF⊥CD.
(1)如果∠AOD=40°,
①那么根據(jù) ,可得∠BOC= 度.
②∠POF的度數(shù)是 度.
(2)圖中除直角外,還有相等的角嗎?請(qǐng)寫出三對(duì):
① ;
② ;
③ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在梯形ABCD中,AB∥DC,∠B=90°,且AB=10,BC=6,CD=2.點(diǎn)E從點(diǎn)B出發(fā)沿BC方向運(yùn)動(dòng),過(guò)點(diǎn)E作EF∥AD交邊AB于點(diǎn)F.將△BEF沿EF所在的直線折疊得到△GEF,直線FG、EG分別交AD于點(diǎn)M、N,當(dāng)EG過(guò)點(diǎn)D時(shí),點(diǎn)E即停止運(yùn)動(dòng).設(shè)BE=x,△GEF與梯形ABCD的重疊部分的面積為y.
(1)證明△AMF是等腰三角形;
(2)當(dāng)EG過(guò)點(diǎn)D時(shí)(如圖(3)),求x的值;
(3)將y表示成x的函數(shù),并求y的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題
如圖,平行四邊形ABCD中,F(xiàn)是CD上一點(diǎn),BF交AD的延長(zhǎng)線于G,則圖中的相似三角形對(duì)數(shù)共有( )
A.8對(duì); | B.6對(duì); | C.4對(duì); | D.2對(duì). |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,是直線上一點(diǎn),為任一條射線,平分,平分.
(1)指出圖中與的補(bǔ)角;
(2)試說(shuō)明與具有怎樣的數(shù)量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com