【題目】閱讀材料:把形如的二次三項(xiàng)式(或其一部分)配成完全平方式的方法叫配方法.配方法的基本形式是完全平方公式的逆寫,即.請(qǐng)根據(jù)閱讀材料解決下列問題:

1)填空:分解因式_____

2)若,求的值;

3)若、、分別是的三邊,且,試判斷的形狀,并說明理由.

【答案】1;(22;(3)等邊三角形.

【解析】

1)根據(jù)完全平方公式即可因式分解;

2)根據(jù)非負(fù)性即可求解;

3)把原式化成幾個(gè)平方和的形式,根據(jù)非負(fù)性即可求解.

1

故答案為:

2

3a2+4b2+c22ab6b2c+4=0,

∴(a2-2ab+b2)+(c22c+1)+(3b26b+3)=0

(a2-2ab+b2)+(c22c+1)+3(b22b+1)=0

∴(a-b)2+(c-1)2+3(b-1)2=0,

a-b=0,c-1=0,b-1=0

a=b,c=1b=1,

a=b=c

ab、c分別是ABC的三邊,

∴△ABC是等邊三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,己知拋物線經(jīng)過點(diǎn)A(l, 0),B(一3,0),C(0,3)三點(diǎn).

(1)求拋物線的解析式;

(2)在x軸下方的拋物線上,是否存在點(diǎn)M,使得?若存在求出M點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由;

(3)點(diǎn)P是位于直線BC上方的拋物線上的一個(gè)動(dòng)點(diǎn),是否存在點(diǎn)P,使的面積最大?若存在,求出P的坐標(biāo)及的最大值:若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線y=﹣x2+x﹣4y軸相交于點(diǎn)A,與x軸相交于B和點(diǎn)C(點(diǎn)C在點(diǎn)B的右側(cè),點(diǎn)D的坐標(biāo)為(4,﹣4),將線段OD沿x軸的正方向平移n個(gè)單位后得到線段EF.

(1)當(dāng)n=   時(shí),點(diǎn)E或點(diǎn)F正好移動(dòng)到拋物線上;

(2)當(dāng)點(diǎn)F正好移動(dòng)到拋物線上,EFCD相交于點(diǎn)G時(shí),求GF的長(zhǎng);

(3)如圖2,若點(diǎn)Px軸上方拋物線上一動(dòng)點(diǎn),過點(diǎn)P作平行于y軸的直線交AC于點(diǎn)M,探索是否存在點(diǎn)P,使線段MP長(zhǎng)度有最大值?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,BDBC,BDC=60°,DAB和∠DBC的平分線相交于點(diǎn)E,F(xiàn)AE上一點(diǎn),EF=EB,GBD延長(zhǎng)線上一點(diǎn),BG=AB,連接GE.

(1)ABCD的面積為9,求AB的長(zhǎng);

(2)求證:AF=GE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)的圖象經(jīng)過點(diǎn)P(2,﹣3).

(1)求該函數(shù)的解析式;

(2)若將點(diǎn)P沿x軸負(fù)方向平移3個(gè)單位,再沿y軸方向平移n(n0)個(gè)單位得到點(diǎn)P′,使點(diǎn)P′恰好在該函數(shù)的圖象上,求n的值和點(diǎn)P沿y軸平移的方向.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣為了落實(shí)中央的“強(qiáng)基惠民工程”,計(jì)劃將某村的居民自來水管道進(jìn)行改造.該工程若由甲隊(duì)單獨(dú)施工恰好在規(guī)定時(shí)間內(nèi)完成;若乙隊(duì)單獨(dú)施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的15倍.如果由甲、乙隊(duì)先合做15天,那么余下的工程由甲隊(duì)單獨(dú)完成還需5天.

1)這項(xiàng)工程的規(guī)定時(shí)間是多少天?

2)已知甲隊(duì)每天的施工費(fèi)用為6500元,乙隊(duì)每天的施工費(fèi)用為3500元.為了縮短工期以減少對(duì)居民用水的影響,工程指揮部最終決定該工程由甲、乙隊(duì)合做來完成.則該工程施工費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)y=的圖象在第一象限交于點(diǎn)A(4,3),與y軸的負(fù)半軸交于點(diǎn)B,且OA=OB.

(1)求函數(shù)y=kx+b和y=的表達(dá)式;

(2)已知點(diǎn)C(0,5),試在該一次函數(shù)圖象上確定一點(diǎn)M,使得MB=MC,求此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),,過點(diǎn)交直線(即點(diǎn)的縱坐標(biāo)始終為),連接.

1)求的長(zhǎng).

2)若為等腰直角三角形,求的值.

3)在(2)的條件下求所在直線的表達(dá)式.

4)用的代數(shù)式表示的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0。

(1)求證:方程恒有兩個(gè)不相等的實(shí)數(shù)根;

(2)若此方程的一個(gè)根是1,請(qǐng)求出方程的另一個(gè)根,并求以此兩根為邊長(zhǎng)的直角三角形的周長(zhǎng)。

查看答案和解析>>

同步練習(xí)冊(cè)答案