如圖,在菱形紙片ABCD中,∠A=60°,將紙片折疊,點(diǎn)A、D分別落在點(diǎn)A′、D′處,且A′D′經(jīng)過點(diǎn)B,EF為折痕,當(dāng)D′F⊥CD時(shí),的值為( 。
A.
B.C.
D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
在如圖所示的平面直角坐標(biāo)系中,點(diǎn)P是直線y=x上的動(dòng)點(diǎn),A(1,0),B(2,0)是x軸上的兩點(diǎn),則PA+PB的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,等腰直角梯形ABCD中,∠ADC=∠BCD=90°,BC=CD=4,P為邊AD上的一個(gè)動(dòng)點(diǎn),AE⊥BP,CF⊥BP,垂足分別為點(diǎn)E、F。證明:DE2+BF2=16。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸交于點(diǎn)C。若直線l過點(diǎn)E(﹣4,0),M為直線l上的動(dòng)點(diǎn),當(dāng)以A、B、M為頂點(diǎn)所作的直角三角形有且只有三個(gè)時(shí),求直線l的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線與x軸相交于O、B,頂點(diǎn)為A,連接OA.
(1)求點(diǎn)A的坐標(biāo)和∠AOB的度數(shù);
(2)若將拋物線向右平移4個(gè)單位,再向上平移2個(gè)單位,再向上翻轉(zhuǎn),得到拋物線m,其頂點(diǎn)為點(diǎn)C.連接OC和AC,把△AOC沿OA翻折得到四邊形ACOC′.試判斷其形狀,并說明理由;
(3)在(2)的情況下,判斷點(diǎn)C′是否在拋物線上,請(qǐng)說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知點(diǎn)A(0,0),B(0,3),C(4,t+3),D(4,t). 記N(t)為□ABCD內(nèi)部(不含邊界)整點(diǎn)的個(gè)數(shù),其中整點(diǎn)是指橫坐標(biāo)和縱坐標(biāo)都是整數(shù)的點(diǎn),則N(t)所有可能的值為【 】
A.6、7 B.7、8 C.6、7、8 D.6、8、9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
我們新定義一種三角形:兩邊平方和等于第三邊平方的兩倍的三角形叫做奇異三角形.
(1)根據(jù)“奇異三角形”的定義,請(qǐng)你判斷命題“等邊三角形一定是奇異三角形”是真命題還是假命題?
(2)在Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇異三角形,求a:b:c;
(3)如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn)(不與點(diǎn)A,B重合),D是半圓的中點(diǎn),C,D在直徑AB的兩側(cè),若在⊙O內(nèi)存在點(diǎn)E,使AE=AD,CB=CE.
①求證:△ACE是奇異三角形;
②當(dāng)△ACE是直角三角形時(shí),求∠AOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,正方形ABCD的邊長為1,分別以AB,BC,CD,DA為斜邊作等腰直角三角形順次得到第一個(gè)正方形A1B1C1D1,分別以A1B1,B1C1,C1D1,D1A1為斜邊作等腰直角三角形順次得到第二個(gè)正方形A2B2C2D2,…,以此類推,則第六個(gè)正方形A2014B2014C2014D2014面積是 。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com