【題目】如圖所示,將兩條寬度相同的紙條交叉重疊放在一起,則重疊部分ABCD________形,若紙條寬DE4 cm,CE3 cm,則四邊形ABCD的面積為________

【答案】 20cm2

【解析】

過點AAHBC于點H,AFCD于點F,首先可判斷重疊部分為平行四邊形,且兩條紙條寬度相同,證RtABHRtDAF,可知AB=AD,即可ABCD是菱形;由勾股定理可得CD=5,再由菱形面積計算方法可得面積.

如圖,過點AAHBC于點H,DFCD于點F,

AH=AF,

由題意得:ABCD,BCAD,

∴四邊形ABCD是平行四邊形,

∴∠ABC=CDA,

RtABHRtDAF中,

RtABHRtDAF,

AB=AD,

∴平行四邊形ABCD是菱形.

RtCDE中,DE4 cm,CE3 cm,∠DEC=90°

CD=

∴菱形ABCD的面積=5×4=20cm2.

故答案為:菱;20cm2.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】定義一種對正整數(shù)n“F”運算:①當n為奇數(shù)時,F(n)=3n+1;②當n為偶數(shù)時,F(n)=(其中k是使F(n)為奇數(shù)的正整數(shù))……,兩種運算交替重復進行,例如,取n=24,則:

n=13,則第2018“F”運算的結(jié)果是(  )

A. 1 B. 4 C. 2018 D. 42018

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】長為1,寬為a的矩形紙片(),如圖那樣折一下,剪下一個邊長等于矩形寬度的正方形(稱為第一次操作);再把剩下的矩形如圖那樣折一下,剪下一個邊長等于此時矩形寬度的正方形(稱為第二次操作);如此反復操作下去.若在第n此操作后,剩下的矩形為正方形,則操作終止.當n=3時,a的值為( )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠BAC=90°,ADBCD,EAC的中點,ED的延長線交AB的延長線于點F.求證:

1DFB∽△AFD;

2ABAC=DFAF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A(8,0)及在第四象限的動點P(x,y),且xy10,設OPA的面積為S

(1) S關(guān)于x的函數(shù)表達式,并直接寫出x的取值范圍

(2) 畫出函數(shù)S的圖象

(3) S12時,點P坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設二次函數(shù)y1y2的圖象的頂點分別為(a,b)、(c,d),當a=﹣c,b=2d,且開口方向相同時,則稱y1y2反倍頂二次函數(shù)

1)請寫出二次函數(shù)y=x2+x+1的一個反倍頂二次函數(shù)

2)已知關(guān)于x的二次函數(shù)y1=x2+nx和二次函數(shù)y2=nx2+x,函數(shù)y1+y2恰是y1﹣y2反倍頂二次函數(shù),求n

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,某校在開發(fā)區(qū)一塊寬為120m的矩形用地上新建分校區(qū),規(guī)劃圖紙上把它分成①②③三個區(qū)域,區(qū)域①和區(qū)域②為正方形,區(qū)域①為教學區(qū);區(qū)域②為生活區(qū);區(qū)域③為活動區(qū),設這塊用地長為xm,區(qū)域③的面積為ym2

(1)求yx之間的函數(shù)關(guān)系式,并注明自變量x的取值范圍;

(2)若區(qū)域③的面積為3200m2,那么這塊用地的長應為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將圖1中的正方形剪開得到圖2,則圖2中共有4個正方形;將圖2中的一個正方形剪開得到圖3,則圖3中共有7個正方形;……如此剪下去,則第n個圖形中正方形的個數(shù)是多少?

1)將下表填寫完整:

圖(n

1

2

3

4

5

……

n

正方形的個數(shù)

1

4

7

……

an

2an= (用含n的代數(shù)式表示)

3)按照上述方法,能否得到2019個正方形?如果能,請求出n;如果不能,請簡述理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點D△ABC內(nèi)一點,AD=BD,且AD⊥BD,連接CD.過點CCE⊥BCAD的延長線于點 E,連接BE.過點DDF⊥CDBC于點F.

1)若BD=DE=,CE=,求BC的長;

(2)若BD=DE,求證:BF=CF.

查看答案和解析>>

同步練習冊答案