【題目】如圖,拋物線軸交于、兩點,與軸交于點,

1)求拋物線的解析式;

2)點為第一象限拋物線上一點,連接、,設(shè)點的橫坐標(biāo)為的面積為,求的函數(shù)關(guān)系式;

3)在(2)的條件下,點為第四象限拋物線上一點,連接,過點軸的垂線交于點,射線交第三象限拋物線于點,連接,若,求點的坐標(biāo).

【答案】1;(2;(3

【解析】

1OB=2OC=4,則點BC的坐標(biāo)分別為(4,0)、(0,2),將點B、C坐標(biāo)代入函數(shù)表達(dá)式,即可求解;

2)設(shè)PAy軸于H,SACP=×CH×xP-xA),先求出直線AP解析式,得出CH長,即可求解;

3)當(dāng)S=時,t2+t=t=2,P(2,3),作EFx軸,QMx軸,CRPM,ENQR,

tanEBF=,得DH=-m-1,∠QEB=2ABE,所以∠QEN=EBF,tanQEN=tanEBF,得m=1-n,DK=-m+1tanQCR=,,即可求解.

1)∵OB=2OC=4,

∴點B、C的坐標(biāo)分別為(4,0)、(0,2)

將點B、C坐標(biāo)代入函數(shù)表達(dá)式得:

解得

故函數(shù)的表達(dá)式為:

故答案為:

2)設(shè)點P(t,t2+t+2),如圖1,設(shè)PAy軸于點H,

解得x=-1x=4

A(-1,0)

設(shè)直線AP解析式為y=kx+b

解得k=(t4),b=(t4)

∴直線AP解析式為:y=(t4)x(t4)

x=0,y=(t4)

CH=2+(t4)=t,

SACP=×CH×(xPxA)=×t×(t+1)=t2+t,

3)當(dāng)S=時,t2+t=

t=2,

P(2,3),

如圖2,作EFx軸,QMx軸,CRPM,ENQR,

設(shè)E(m,m2+m+2),Q(n,n2+n+2)

tanEBF=,

DH=m1,

∵∠QEB=2ABE

∴∠QEN=EBF

tanQEN=tanEBF, ,

m=1n,

DK=m+1tanQCR=

解得:n=6,

故點Q(6,7)

故答案為:Q(6,7)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為踐行“綠水青山就是金山銀山”的重要思想,某森林保護(hù)區(qū)開展了尋找古樹活動.如圖,在一個坡度(或坡比)i1:2.4的山坡AB上發(fā)現(xiàn)有一棵古樹CD.測得古樹底端C到山腳點A的距離AC26米,在距山腳點A水平距離6米的點E處,測得古樹頂端D的仰角∠AED48°(古樹CD與山坡AB的剖面、點E在同一平面上,古樹CD與直線AE垂直),則古樹CD的高度約為多少米?(參考數(shù)據(jù):sin48°≈0.73,cos48°≈0.67,tan48°≈1.11

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點C在⊙O上,過點C作⊙O的切線交AB的延長線于點D,已知∠D=30°.

(1)求∠A的度數(shù);

(2)若點F在⊙O上,CF⊥AB,垂足為E,CF=,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)所在年級的500名學(xué)生參加志愿者活動,現(xiàn)有以下5個志愿服務(wù)項目:A,紀(jì)念館志講解員.B.書香社區(qū)圖書整理C.學(xué)編中國結(jié)及義賣.D,家風(fēng)講解員E.校內(nèi)志愿服務(wù),要求:每位學(xué)生都從中選擇一個項目參加,為了了解同學(xué)們選擇這個5個項目的情況,該同學(xué)隨機(jī)對年級中的40名同學(xué)選擇的志愿服務(wù)項目進(jìn)行了調(diào)查,過程如下:

收集數(shù)據(jù):設(shè)計調(diào)查問卷,收集到如下數(shù)據(jù)(志愿服務(wù)項目的編號,用字母代號表示)

B,E,BA,EC,C,C,BB,

A,C,ED,B,AB,EC,A,

D,DB,B,C,CA,E,B

CB,D,C,AC,C,A,C,E,

1)整理、描述詩句:劃記、整理、描述樣本數(shù)據(jù),繪制統(tǒng)計圖如下,請補(bǔ)全統(tǒng)計表和統(tǒng)計圖

選擇各志愿服務(wù)項目的人數(shù)統(tǒng)計表

志愿服務(wù)項目

劃記

人數(shù)

A.紀(jì)念館志愿講解員

8

B.書香社區(qū)圖書整理

C.學(xué)編中國結(jié)及義賣

正正

12

D.家風(fēng)講解員

E.校內(nèi)志愿服務(wù)

6

合計

40

40

分析數(shù)據(jù)、推斷結(jié)論

2)抽樣的40個樣本數(shù)據(jù)(志愿服務(wù)項目的編號)的眾數(shù)是   (填AE的字母代號)

3)請你任選AE中的兩個志愿服務(wù)項目,根據(jù)該同學(xué)的樣本數(shù)據(jù)估計全年級大約有多少名同學(xué)選擇這兩個志愿服務(wù)項目.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在的正方形網(wǎng)格中,每個小正方形的邊長均為1,的三個頂點均在小正方形的頂點上.

1)在圖1中畫一個(點在小正方形的頂點上),使的周長等于的周長,且以、、為頂點的四邊形是軸對稱圖形;

2)在圖2中畫(點在小正方形的頂點上),使的周長等于的周長,且以、、為頂點的四邊形是中心對稱圖形;

3)直接寫出圖2中四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)和二次函數(shù)部分自變量和對應(yīng)的函數(shù)值如下表:

……

……

……

……

……

……

1)求的表達(dá)式;

2)關(guān)于的不等式的解集是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《小豬佩奇》這部動畫片,估計同學(xué)們都非常喜歡.周末,小豬佩奇一家4口人(小豬佩奇,小豬喬治,小豬媽媽,小豬爸爸)到一家餐廳就餐,包廂有一圓桌,旁邊有四個座位(,,).

1)小豬佩奇隨機(jī)坐到座位的概率是________;

2)若現(xiàn)在由小豬佩奇,小豬喬治兩人先后選座位,用樹狀圖或列表的方法計算出小豬佩奇和小豬喬治坐對面的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,的直徑,點延長線上的一點,過點作的切線,切點為,連接.

1)若,求的長;

2)若點的延長線上運(yùn)動,的平分線交于點,你認(rèn)為的大小是否發(fā)生變化?若變化,請說明理由;若不變化,求出的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查某市市民上班時最常用的交通工具的情況,隨機(jī)抽取了部分市民進(jìn)行調(diào)查,要求被調(diào)查者從“:自行車,:家庭汽車,:公交車,:電動車,:其他”五個選項中選擇最常用的一項,將所有調(diào)查結(jié)果整理后繪制成如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請結(jié)合統(tǒng)計圖回答下列問題.

1)本次調(diào)查中,一共調(diào)查了 名市民;扇形統(tǒng)計圖中,項對應(yīng)的扇形圓心角是_____ ;

2)補(bǔ)全條形統(tǒng)計圖;

3)若甲上班時從三種交通工具中隨機(jī)選擇一種, 乙上班時從三種交通工具中隨機(jī)選擇一種,請用列表法或畫樹狀圖的方法,求出甲、乙兩人都不選種交通工具上班的概率.

查看答案和解析>>

同步練習(xí)冊答案