【題目】已知點P為拋物線yx2上一動點,以P為頂點,且經(jīng)過原點O的拋物線,記作“yp”,設(shè)其與x軸另一交點為A,點P的橫坐標(biāo)為m.
(1)①當(dāng)△OPA為直角三角形時,m= ;
②當(dāng)△OPA為等邊三角形時,求此時“yp”的解析式;
(2)若P點的橫坐標(biāo)分別為1,2,3,…n(n為正整數(shù))時,拋物線“yp”分別記作“”、“”…,“”,設(shè)其與x軸另外一交點分別為A1,A2,A3,…An,過P1,P2,P3,…Pn作x軸的垂線,垂足分別為H1,H2,H3,…Hn.
1)① Pn的坐標(biāo)為 ;OAn= ;(用含n的代數(shù)式來表示)
②當(dāng)PnHn﹣OAn=16時,求n的值.
2)是否存在這樣的An,使得∠OP4An=90°,若存在,求n的值;若不存在,請說明理由.
【答案】(1)① 2;② yx2+2x;(2)1):① (n,n2);2n;② n=8;2):存在,n=10.
【解析】
(1)①由△OPA為直角三角形時.得到△OPA為以點P為頂點的等腰直角三角形,從而可得答案,②由△OPA為等邊三角形,過P作于,利用三角函數(shù)與拋物線的解析式,求點的坐標(biāo),從而可得答案,
(2)1)①利用Pn的橫坐標(biāo)為n,結(jié)合拋物線的對稱性可得答案,②由 PnHn﹣OAn=16,建立方程求解即可,2) 畫出圖形,證明Rt△OP4H4∽Rt△P4AnH4即可得到答案.
解:(1)①當(dāng)△OPA為直角三角形時.
∵PO=PA,故△OPA為以點P為頂點的等腰直角三角形,
∴點P的橫坐標(biāo)和縱坐標(biāo)相同,故點P(m,m),
將點P的坐標(biāo)代入yx2得:mm2,解得:m=0或2(舍去0).
故答案為:2;
②當(dāng)△OPA為等邊三角形時,如圖,過P作于,
P(m,m),
將點P的坐標(biāo)代入拋物線表達(dá)式,
解得:m=2,
故點P的坐標(biāo)為(2,6),
故“yp”的解析式為:y=a(x﹣2)2+6,
點A的坐標(biāo)為(2m,0),即(4,0),
將點A的坐標(biāo)代入y=a(x﹣2)2+6并解得:a,
故“yp”的解析式為:y(x﹣2)2+6x2+2x;
(2)1)① 由題意得:Pn的橫坐標(biāo)為n,則其坐標(biāo)為(n,n2),
由拋物線的對稱性得:An=2n.
故答案為:(n,n2);2n;
②由題意得:PnHn﹣OAnn2﹣2n=16,
解得:n=8或﹣4(舍去﹣4),
∴n=8;
2)存在,理由:
如下圖所示,由1)知,點P4的坐標(biāo)為(4,8),An=2n,
即OH4=4,P4H4=8,H4An=2n﹣4,
∵∠OP4An=90°,∴∠OP4H4+∠H4P4An=90°.
∵∠H4P4An+∠P4AnH4=90°,
∴∠OP4H4=∠P4AnH4,
∴Rt△OP4H4∽Rt△P4AnH4,
∴P4H42=OH4H4An,
即82=4×(2n﹣4),
解得:n=10.
當(dāng)img src="http://thumb.zyjl.cn/questionBank/Upload/2020/07/22/03/d07c1de6/SYS202007220309563219592517_DA/SYS202007220309563219592517_DA.015.png" width="44" height="19" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />時,使得∠=90°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知中點分別在邊、邊上,連接點、點在直線同側(cè),連接且.
(1)點與點重合時,
①如圖1,時,和的數(shù)量關(guān)系是 ;位置關(guān)系是 ;
②如圖2,時,猜想和的關(guān)系,并說明理由;
(2)時,
③如圖3,時,若求的長度;
④如圖4,時,點分別為和的中點,若,直接寫出的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與y軸正半軸相交,其頂點坐標(biāo)為(,1),下列結(jié)論:①abc<0;②a+b=0;③4ac﹣b2=4a;④a+b+c<0.其中正確的有( 。﹤.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為鼓勵大學(xué)畢業(yè)生自主創(chuàng)業(yè),某市政府出臺了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價提供產(chǎn)品給大學(xué)畢業(yè)生自主銷售,成本價與出廠價之間的差價由政府承擔(dān).李明按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價為每件8元,出廠價為每件10元,每月銷售量y(件)與銷售單價x(元)之間的關(guān)系近似滿足一次函數(shù):y=-10x+500.
(1)李明在開始創(chuàng)業(yè)的第一個月將銷售單價定為20元,那么政府這個月為他承擔(dān)的總差價為多少元?
(2)設(shè)李明獲得的利潤為w(元),當(dāng)銷售單價定為多少元時,每月可獲得最大利潤?
(3)物價部門規(guī)定,這種節(jié)能燈的銷售單價不得高于25元.如果李明想要每月獲得的利潤不低于3410元,那么政府為他承擔(dān)的總差價最少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《小豬佩奇》這部動畫片,估計同學(xué)們都非常喜歡.周末,小豬佩奇一家4口人(小豬佩奇,小豬喬治,小豬媽媽,小豬爸爸)到一家餐廳就餐,包廂有一圓桌,旁邊有四個座位(,,,).
(1)小豬佩奇隨機(jī)坐到座位的概率是________;
(2)若現(xiàn)在由小豬佩奇,小豬喬治兩人先后選座位,用樹狀圖或列表的方法計算出小豬佩奇和小豬喬治坐對面的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店專售一款電動牙刷,其成本為20元/支,銷售中發(fā)現(xiàn),該商品每天的銷售量y(支)與銷售單價x(元/支)之間存在如圖所示的關(guān)系.
(1)求y與x之間的函數(shù)關(guān)系式.
(2)由于湖北省武漢市爆發(fā)了新型冠狀病毒肺炎(簡稱“新冠肺炎”)疫情,該網(wǎng)店店主決定從每天獲得的利潤中抽出200元捐獻(xiàn)給武漢,為了保證捐款后每天剩余利潤不低于550元,如何確定這款電動牙刷的銷售單價?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直l1∥l2,點A、B固定在直線l2上,點C是直線11上一動點,若點E、F分別為CA、CB中點,對于下列各值:①線段EF的長;②△CEF的周長;③△CEF的面積;④∠ECF的度數(shù),其中不隨點C的移動而改變的是( 。
A.①②B.①③C.②④D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】深圳某百果園店售賣贛南臍橙,已知每千克臍橙的成本價為元,在銷售臍橙的這天時間內(nèi),銷售單價(元/千克)與時間第(天)之間的函數(shù)關(guān)系式為(,且為整數(shù)),日銷售量(千克)與時間第(天)之間的函數(shù)關(guān)系式為(,且為整數(shù))
(1)請你直接寫出日銷售利潤(元)與時間第(天)之間的函數(shù)關(guān)系式;
(2)該店有多少天日銷售利潤不低于元?
(3)在實際銷售中,該店決定每銷售千克臍橙,就捐贈元給希望工程,在這天中,每天扣除捐贈后的日銷售利潤隨時間的增大而增大,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:
在綜合與實踐課上,老師讓同學(xué)們以“矩形紙片的剪拼”為主題開展數(shù)學(xué)活動.如 圖 1,將:矩形紙片 ABCD 沿對角線 AC 剪開,得到△ABC 和△ACD.并且量得 AB =4cm,AC=8cm.
操作發(fā)現(xiàn):
(1)將圖 1 中的△ACD 以點 A 為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn)∠α,使∠α=∠BAC,得到如圖 2 所示的△AC′D,過點 C 作 AC′的平行線,與 DC'的延長線 交于點 E,則四邊形 ACEC′的形狀是 .
(2)創(chuàng)新小組將圖 1 中的△ACD 以點 A 為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn),使 B、 A、D 三點在同一條直線上,得到如圖 3 所示的△AC′D,連接 CC',取 CC′的中 點 F,連接 AF 并延長至點 G,使 FG=AF,連接 CG、C′G,得到四邊形 ACGC′, 發(fā)現(xiàn)它是正方形,請你證明這個結(jié)論.
實踐探究:
(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進(jìn)行如下操作:將△ABC 沿著 BD 方向平移,使點 B 與點 A 重合,此時 A 點平移至 A'點,A'C 與 BC′相交于點 H, 如圖 4 所示,連接 CC′,試求 tan∠C′CH 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com