【題目】如果一條拋物線y=ax2+bx+c(a≠0)與x軸有兩個交點(diǎn),那么以拋物線的頂點(diǎn)和這兩個交點(diǎn)為頂點(diǎn)的三角形稱為這條拋物線的“拋物線三角形”,[a,b,c]稱為“拋物線系數(shù)”.
(1)任意拋物線都有“拋物線三角形”是______(填“真”或“假”)命題;
(2)若一條拋物線系數(shù)為[1,0,-2],則其“拋物線三角形”的面積為________;
(3)若一條拋物線系數(shù)為[-1,2b,0],其“拋物線三角形”是個直角三角形,求該拋物線的解析式;
(4)在(3)的前提下,該拋物線的頂點(diǎn)為A,與x軸交于O,B兩點(diǎn),在拋物線上是否存在一點(diǎn)P,過P作PQ⊥x軸于點(diǎn)Q,使得△BPQ∽△OAB,如果存在,求出P點(diǎn)坐標(biāo),如果不存在,請說明理由.
【答案】(1)假;(2);(3)y=-x2+2x 或y=-x2-2x;(4)P(1,1)或P(-1,-3)或P(1,-3)或(-1,1).
【解析】(1)當(dāng)△>0時,拋物線與x軸有兩個交點(diǎn),由此可得出結(jié)論;
(2)根據(jù)“拋物線三角形”定義得到,由此可得出結(jié)論;
(3)根據(jù)“拋物線三角形”定義得到y=-x2+2bx,它與x軸交于點(diǎn)(0,0)和(2b,0);
當(dāng)拋物線三角形是直角三角形時,根據(jù)對稱性可知它一定是等腰直角三角形,
由拋物線頂點(diǎn)為(b,b2),以及直角三角形斜邊上的中線等于斜邊的一半得到,解方程即可得到結(jié)論;
(4)分兩種情況討論:①當(dāng)拋物線為y=-x2+2x 時,②當(dāng)拋物線為y=-x2-2x 時.
(1)當(dāng)△>0時,拋物線與x軸有兩個交點(diǎn),此時拋物線才有“拋物線三角形”,故此命題為假命題;
(2)由題意得:,令y=0,得:x=,∴ S==;
(3)依題意:y=-x2+2bx,它與x軸交于點(diǎn)(0,0)和(2b,0);
當(dāng)拋物線三角形是直角三角形時,根據(jù)對稱性可知它一定是等腰直角三角形.
∵y=-x2+2bx=,∴頂點(diǎn)為(b,b2),由直角三角形斜邊上的中線等于斜邊的一半得到:,∴,解得:b=0(舍去)或b=±1,
∴y=-x2+2x 或y=-x2-2x.
(4)①當(dāng)拋物線為y=-x2+2x 時.
∵△AOB為等腰直角三角形,且△BPQ∽△OAB,
∴△BPQ為等腰直角三角形,設(shè)P(a,-a2+2a),∴Q((a,0),
則|-a2+2a|=|2-a|,即.
∵a-2≠0,∴,∴a=±1,∴P(1,1)或(-1, -3).
②當(dāng)拋物線為y=-x2-2x 時.
∵△AOB為等腰直角三角形,且△BPQ∽△OAB,
∴△BPQ為等腰直角三角形,設(shè)P(a,-a2-2a),∴Q((a,0),
則|-a2-2a|=|2+a|,即.
∵a+2≠0,∴,∴a=±1,∴P(1,-3,)或(-1,1).
綜上所述:P(1,1)或P(-1,-3)或P(1,-3,)或(-1,1).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB為⊙O直徑,AC=CD,連接AD交BC于點(diǎn)M,延長MC到N,使CN=CM.
(1)判斷直線AN是否為⊙O的切線,并說明理由;
(2)若AC=10,tan∠CAD=,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲,乙兩人以相同路線前往距離單位10的培訓(xùn)中心參加學(xué)習(xí).圖中分別表示甲,乙兩人前往目的地所走的路程s隨時間(分)變化的函數(shù)圖象.以下說法:①乙比甲提前12分鐘到達(dá);②甲的平均速度為15千米/小時;③乙走了8后遇到甲;④乙出發(fā)6分鐘后追上甲.其中正確的有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上點(diǎn)A,B對應(yīng)的數(shù)分別是a,b,且a,b滿足:.
(1)填空:a= ,b= ;在數(shù)軸上描出點(diǎn)A,B;
(2)若點(diǎn)M在數(shù)軸上對應(yīng)的數(shù)為m,且滿足,則m= ;
(3)若A,B兩點(diǎn)同時沿數(shù)軸正方向勻速運(yùn)動,點(diǎn)A的速度為每秒2個單位長度,點(diǎn)B的速度為每秒1個單位長度,在運(yùn)動過程中,當(dāng)點(diǎn)B到點(diǎn)O的距離是點(diǎn)A到點(diǎn)O距離的3倍時,點(diǎn)A對應(yīng)的數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有3本和6本數(shù)學(xué)課本整齊地疊放在講臺上,請根據(jù)圖中所給的數(shù)據(jù)信息,解答下列問題:
(1)若設(shè)每本數(shù)學(xué)書厚度為,請列出方程并求出每本書的厚度.
(2)若設(shè)桌子的高度為,請列出方程并求出桌子的高度.
(3)請結(jié)合(1)(2)的計算,寫出數(shù)學(xué)課本數(shù)(本放在桌子上的最大高度之間的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線(,,為常數(shù),)經(jīng)過點(diǎn),,其對稱軸在軸右側(cè),有下列結(jié)論:
①拋物線經(jīng)過點(diǎn);
②方程有兩個不相等的實數(shù)根;
③.
其中,正確結(jié)論的個數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市正在開展“食品安全城市”創(chuàng)建活動,為了解學(xué)生對食品安全知識的了解情況,學(xué)校隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查,將調(diào)查結(jié)果按照“A非常了解、B了解、C了解較少、D不了解”四類分別進(jìn)行統(tǒng)計,并繪制了下列兩幅統(tǒng)計圖(不完整).請根據(jù)圖中信息,解答下列問題:
(1)此次共調(diào)查了 名學(xué)生;
(2)扇形統(tǒng)計圖中D所在扇形的圓心角為 ;
(3)將上面的條形統(tǒng)計圖補(bǔ)充完整;
(4)若該校共有800名學(xué)生,請你估計對食品安全知識“非常了解”的學(xué)生的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘漁船正以60海里/小時的速度向正東方向航行,在A處測得島礁P在東北方向上,繼續(xù)航行1.5小時后到達(dá)B處,此時測得島礁P在北偏東30°方向,同時測得島礁P正東方向上的避風(fēng)港M在北偏東60°方向.為了在臺風(fēng)到來之前用最短時間到達(dá)M處,漁船立刻加速以75海里/小時的速度繼續(xù)航行_____小時即可到達(dá).(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ACB中,∠ACB=90°,CE是△ACB的中線,分別過點(diǎn)A、點(diǎn)C作CE和AB的平行線,交于點(diǎn)D.
(1)求證:四邊形ADCE是菱形;
(2)若CE=4,且∠DAE=60°,求△ACB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com