【題目】如圖,在四邊形ABCD中,AB∥DC,AB=AD,對(duì)角線AC、BD相交于點(diǎn)O,AC平分∠BAD,過點(diǎn)C作CE⊥AB交AB的延長線于點(diǎn)E,若AB=,BD=2,則OE的長等于________.
【答案】
【解析】
先判斷出∠OAB=∠DCA,進(jìn)而判斷出∠DAC=∠DAC,得出CD=AD=AB,即可得出四邊形ABCD是菱形;再判斷出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出結(jié)論.
(1)∵AB∥CD,
∴∠OAB=∠DCA,
∵AC為∠DAB的平分線,
∴∠OAB=∠DAC,
∴∠DCA=∠DAC,
∴CD=AD=AB,
∵AB∥CD,
∴四邊形ABCD是平行四邊形,
∵AD=AB,
∴ABCD是菱形;
∴OA=OC,BD⊥AC,∵CE⊥AB,
∴OE=OA=OC,
∵BD=2,
∴OB=BD=1,
在Rt△AOB中,AB=,OB=1,
∴OA==2,
∴OE=OA=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=10,AC=8,BC=6,以邊AB的中點(diǎn)O為圓心,作半圓與AC相切,點(diǎn)P、Q分別是邊BC和半圓上的動(dòng)點(diǎn),連接PQ,則PQ長的最大值與最小值的和是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“2018雙十一購物狂歡節(jié)”,阿里巴巴天貓?jiān)陂_場的2分5秒交易額超100億元.劉老師為此提前花88元購買了一張“88VIP”卡,使用此卡可享受部分特定商品九五折.
(1)為了使買的“88VIP”卡不虧,劉老師應(yīng)至少選購多少元特定商品?
(2)劉老師在“雙十一”到來之前,分別在兩家店里選了一套標(biāo)價(jià)為1100元的書籍和一件標(biāo)價(jià)為990元的羽絨服.據(jù)了解,雙十一當(dāng)天書籍可以使用“88VIP”卡,并降價(jià);同時(shí),劉老師發(fā)現(xiàn)聰明的老板先將羽絨服提價(jià),雙十一當(dāng)天再降價(jià).最后劉老師雙十一購買兩種商品所花費(fèi)的總金額恰好是 (1) 中的最小值,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我省松原地震后,某校開展了“我為災(zāi)區(qū)獻(xiàn)愛心”捐款活動(dòng),八年級(jí)一班的團(tuán)支部對(duì)全班50人捐款數(shù)額進(jìn)行了統(tǒng)計(jì),繪制出如下的統(tǒng)計(jì)圖.
(1)把統(tǒng)計(jì)圖補(bǔ)充完整;
(2)直接寫出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(3)若該校共有學(xué)生1600人,請根據(jù)該班的捐款情況估計(jì)該校捐款金額為20元的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,科技小組準(zhǔn)備用材料圍建一個(gè)面積為60m2的矩形科技園ABCD,其中一邊AB靠墻,墻長為12m。設(shè)AD的長為xm,DC的長為ym。
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若圍成矩形科技園ABCD的三邊材料總長不超過26m,材料AD和DC的長都是整米數(shù),求出滿足條件的所有圍建方案。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場經(jīng)調(diào)研得出某種商品每天的利潤y(元)與銷售單價(jià)x(元)之間滿足關(guān)系:y=ax2+bx﹣75,其圖象如圖所示.
(1)求a與b的值;
(2)銷售單價(jià)為多少元時(shí),該種商品每天的銷售利潤最大?最大利潤是多少元?(參考公式:當(dāng)x=時(shí),二次函數(shù)y=ax2+bx+c(a≠0)有最。ù螅┲担
(3)銷售單價(jià)定在多少時(shí),該種商品每天的銷售利潤為21元?結(jié)合圖象,直接寫出銷售單價(jià)定在什么范圍時(shí),該種商品每天的銷售利潤不低于21元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是正方形ABCD中CD邊上任意一點(diǎn),AB=4,以點(diǎn)A為中心,把△ADE順時(shí)針旋轉(zhuǎn)90°得到△AD′F
(1)畫出旋轉(zhuǎn)后的圖形,求證:點(diǎn)C、B、F三點(diǎn)共線;
(2)AG平分∠EAF交BC于點(diǎn)G.
①如圖2,連接EF.若BG:CE=5:6,求△AEF的面積;
②如圖3,若BM、DN分別為正方形的兩個(gè)外角角平分線,交AG、AE的延長線于點(diǎn)M、N.當(dāng)MM∥DC時(shí),直接寫出DN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一幢樓房AB背后有一臺(tái)階CD,臺(tái)階每層高0.2米,且AC=14.5米,NF=0.2米.設(shè)太陽光線與水平地面的夾角為α,當(dāng)α=56.3°時(shí),測得樓房在地面上的影長AE=10米,現(xiàn)有一只小貓睡在臺(tái)階的NF這層上曬太陽.
(1)求樓房的高度約為多少米?
(2)過了一會(huì)兒,當(dāng)α=45°時(shí),問小貓能否還曬到太陽?請說明理由.(參考數(shù)據(jù):sin56.3°≈0.83,cos56.3°≈0.55,tan56.3°≈1.5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末,小華和小亮想用所學(xué)的數(shù)學(xué)知識(shí)測量家門前小河的寬.測量時(shí),他們選擇了河對(duì)岸邊的一棵大樹,將其底部作為點(diǎn)A,在他們所在的岸邊選擇了點(diǎn)B,使得AB與河岸垂直,并在B點(diǎn)豎起標(biāo)桿BC,再在AB的延長線上選擇點(diǎn)D豎起標(biāo)桿DE,使得點(diǎn)E與點(diǎn)C、A共線.
已知:CB⊥AD,ED⊥AD,測得BC=1m,DE=1.5m,BD=8.5m.測量示意圖如圖所示.請根據(jù)相關(guān)測量信息,求河寬AB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com